The Handwritten Digits Model

Introduction

This tutorial explores how to estimate the parameters of the handwritten digits model. It does so by "opening the black box" using an interactive session. The objective is to delve into how to conduct an estimation rather than to find the absolute best search algorithm. The results are good, but they could (have) certainly be bettered.

Along the way, brief functions are defined which:

- define the components of the model and show how the model feeds forward to make predictions;
- calculate the gradient efficiently using back propagation;
- demonstrate how the gradient can be applied in steps to reduce the objective;
- define epochs to more efficiently use the data in the image dataset; and
- twiddle the knobs to vary the run parameters.

This is an interactive session using APL. You can execute all the statements presented with little more than copy and paste. You're encouraged to explore on your own along the way.

The APL environment

Why APL? This provides a rich language ideally suited to the manipulation of matrices and higher order arrays. It is mature, stable, well documented and well understood. It's also interactive, which means that you can break a big problem down into smaller steps and examine what's happening along the way.

All of the text in the APL385 Unicode font is executable in APL. The particular APL used here is Dyalog APL 17.1 with:

```
Dio+0
\squarepp+6
Drl+16807
]boxing on
```

Dyalog APL is freely available for non-commercial use at www.dyalog.com.

Definitions

This tutorial makes use of a few utility functions. These are defined here with brief comment.

```
num}\leftarrow{x/\rho\omega
sum}\leftarrow{+/,\omega
mean\leftarrow{(sum\divnum)\omega}
sop < {+/, \alpha\times\omega}
ssq}+{sop\ddot{~}\omega
image < {28 28\rho(c\omega>0.5)[' *'}
```



```
correct<{0.01 rnd 0.01\timessum TestLabels^ф{\omega=\lceil/\omega}Ö1\vdash
    \phiff \omega,cTestImages}
incorrect<{\underline{\imathv\TestLabels}\ddagger\not=\emptyset{\omega=\lceil/\omega}\ddot{\circ}1\vdash
    \phiff \omega,cTestImages}
```

Number
Sum
Mean
Sum of product
Sum of squares
Rough display of an image sample
Execution time in seconds
\% correct
Indices of incorrect matches

The Model

The model used is based on the three layer model described more fully in [0]. It has an input layer, one intermediate layer and an output layer. The input layer is a vector of 784 black and white pixel intensities on a scale from 0 to 1 . The intermediate layer is a vector of length 16 and the output layer is a boolean vector of length 10 .

The transitions between layers incorporate biases and an activation function:

$$
t f \leftarrow\{\text { activate } \alpha+. \times 1 ; \omega\}
$$

Transition function.
The intermediate layer is calculated from the input layer by intermediate +p 0 tf input where p 0 is a transition matrix of shape 16785 . The output layer is produced from the intermediate layer in a similar way with output $\leftarrow p 1$ tf intermediate where $p 1$ is a transition matrix of shape 1017.

There are a number of possibilities for the activation function. We'll consider three:

```
sigmoid+{\div1+*-\omega}
relu+{0\lceil\omega}
tanh<{70\omega}
```

Sigmoid $1 / 1+e^{-x}$
Rectified Linear Unit
Hyperbolic tangent

For each activation function we'll need to know its derivative. The corresponding derivatives are:

```
dsigmoid
drelu<{0<\omega}
dtanh}<{{(1+\omega)\times1-\omega}\operatorname{tanh}\omega
```

The target is a boolean vector of length 10 with a single 1 marking the digit. The model's corresponding predictions are made with the feed forward function:

```
ff
```

Note that the feed forward function $f f$ handles a matrix argument as input, as long as the number of samples appears as the final axis of its argument.

The objective function is the measure chosen to show how far a set of parameters deviates from optimal. We'll consider two:

```
leastsquares &ssq target-ff \omega,cinput}
```

```
cren*{(\alpha\times\otimes\omega)+(1-\alpha)\times\oplus1-\omega}
crossentropy+{-sum target cren ff \omega,cinput}
```

The gradient function is based on the three layer gradient function from [0]. It is defined for the least squares objective as:

```
r*gr_lsq(p1 p0 target input);s;t;z0;a0;z1;a1;R;e1;e0
ค Gradient for least squares objective
    a0<activate z0<p0+.xs+1,input
    a1+activate z1&p1+.xt+1,a0
    R+2\timesa1-target
    e1+R\timesdactivate z1
    e0<(($0 1\downarrowp1)+.xe1)\timesdactivate z0
    r<(e1+.\times\phit)(e0+.\times\phis)
    r\div+-1\uparrow2\uparrow(\rhoinput),1
```

For the cross entropy objective, the gradient function is the same with just one change. The line calculating R needs to be: $R+(a 1-t$ target $) \div a 1 \times 1-a 1$.

Note that gr_l sq returns the mean gradient of all the samples in input. This standardizes the magnitude of the gradient's value, making it possible to compare gradients derived from inputs with differing numbers of samples.

Estimating the Parameters
 with Least Squares

Let's start with some manual examination of the behaviour of the model with a least squares objective. First we'll initialize the structure and transition matrices; then set the objective function, its gradient, the activation function and its derivative.

```
    Orl<16807
    structure<10 16 784
    \rho"p+(1+1\downarrow\mathrm{ structure )}\div\ddot{~}(-1\downarrow\mathrm{ structure ) {?( }\alpha,\omega+1)\rho0}* 1 1 structure
10 17 16 785
obj\leftarrowleastsquares \diamond gr*gr_lsq \diamond activate\leftarrowsigmoid \diamond dactivate<dsigmoid
target input<TrainingLabels TrainingImages
```

As a reference point, let's note the value for the objective function if we make no prediction at all (i.e. the output is all zero) is:

```
    ssq target
```

60000

And if we make a prediction with the randomly generated weights p :
(obj, correct)p
18679110.09

This tells us that making a prediction with this set of random weights actually produces a worse objective value than if we'd made no guess at all. The number of correct guesses is about 10% which is as we'd expect from pure guesswork (as there are 10 possible values in the output layer).

Iterating with a gradient

Let's now calculate the gradient and see the effect of taking some steps. We'll start with something really small to be true to the Taylor expansion assumption:
$g \leftarrow g r$ p,target input
obj $p-0.000001 \times g$
186791
So much for that idea. It appears we've taken a really, really tiny step, producing no noticeable change in the objective. Let's be bolder:
obj $p+p-0.001 \times g$
186612
That's definitely an improvement. We've moved the objective down, if only by 0.1%. Let's see if we can get a range of values that might help us get a better feeling for the k parameter.

```
    k<0.001
    \uparrow{(\omega,obj)p-\omega\timesg}*** * * * & 5
0.001 186433
0.01 184831
0.1 169591
1 85578.1
10 54246
```

We can certainly see there's progress to be made. Perhaps we should plunge right in and set $k+10$? Maybe not. This is just the beginning, so we should be cautious. Let's work with $k+1$. We'll update the parameters and calculate a new gradient:

```
k<1
p-<k\timesg
g*gr p,target input
```

And again examine a spread of k values:

```
\uparrow{(\omega,obj)p-\omega\timesg}"* kx 10*- 2+\imath5
```

0.0185245
0.182288 .4
$1 \quad 60117.1$
1059970.9
10060000

Once more, it is tempting to set $k+10$. However, there's no rush. Let's be patient and keep $k+1$. This is probably a good point to formalize what happens when we take a step:

```
step }{\omega-k\timesgr \omega,target input
```

This takes a vector of transition matrices and calculates the gradient for the entire training dataset. This is used to adjust the transition matrices using the global parameter k. Let's take one more step:
obj $p+s t e p$ p
60117.1

And in order to take multiple steps:
obj $p<$ step $\ddot{*} 4 \vdash p$
54159.9

Let's do another 4 steps and reassess the k parameter:

```
        obj p<step*̈4\vdashp
54052.8
    g*gr p,target input
    \uparrow{(\omega,obj)p-\omega\timesg}** }k\times10*-2+\imath
    0.01 54052.7
    0.1 54052.2
    1 54047.1
    10 54047.8
100 56222.8
```

This confirms that a k value of 1 is working well. Let's press on with another ten steps.

```
    (obj,correct)p\leftarrowstep\ddot{*10\vdashp}
54030.7 11.35
```

Let's take stock of where we've got to. According to my counting, we've done 21 steps with some progress. The objective has come down to 54030.7 and the percentage of correct guesses has increased to 11.35%. That's not earth-shattering. It is understandable however. Early on in an estimation, the parameters can be expected to be far from any minimum of the objective. The gradient at such great distance is not necessarily pointing in a very productive direction. Progress should be expected to be slow until the estimation gets closer to the minimum point.

What about performance? There's not much point in writing code to solve a problem if it takes forever to run. Fortunately, that's not an issue so far. For example, the last executed line above takes 10 steps, each step calculating the gradients for both transition matrices using all 60000 samples, updates the transition matrices and calculates the sum of squares of the residuals. It takes just under 12 seconds.

Examining the gradient

It's interesting to get an idea of what the gradient looks like. That's not easy when there are 12730 elements. But we can tease out some bits of information.

Zeros are important. When they occur, they stop an element in one layer contributing to a change in an element of the next layer. If we start with the matrix go that transforms the inputs into the intermediate layer:

```
    g1 g0\leftarrow(c0 1)\downarrow"gr p,target input Ignoring the biases
    vo+.=g0
```

160

This tells us that the columns of the go gradient are either all zero or all non-zero.
Which elements of the original image grid are "dead"? By that we mean, they have a zero gradient and are unchanging. We can use the image function to display this:

This makes sense. As the MNIST images are centred in the 28 by 28 grid, we'd expect some of the peripheral cells not to be involved at all in making predictions.

What about the second gradient g 1 ?
$0 \in g 1$
No zeros in this matrix.
0
So, which parts of the grid are contributing the most to the changes brought about by the go gradient? Here's a way to look at that:

```
t<ssqö1-\phig0
cimage t\in200\uparrowt[巾t]
```


As we'd expect, the central cells are the biggest contributors.

Batches and epochs

Estimating the transition parameters is time consuming, largely due to the number of calculations it takes to calculate the gradient. Here's a timing for the gradient of the entire training dataset:

```
    timer'g*gr p,target input'
```

1.184

Although this demonstrates the speed of APL's matrix operations, it could still turn out to be bad news if we have to do many iterations. An alternative technique, which works well in practice, is to use a cruder approximation to the gradient which can be calculated more quickly. This simply uses just a portion of the training images. Here's a timing for a gradient calculation using 1% of the training dataset.

```
timer'g*gr p,(10 600^TrainingLabels)(784 600^TrainingImages)'
```

0.011

If the approximation to the gradient holds up, then this makes it possible to proceed with many more steps in the same amount of time. The algorithm goes like this: choose a batch at random from the training images as input and target, calculate the gradient, take a step and repeat until all the training images have been used once. This is known as an epoch and is coded as follows:

```
r&epoch(p1 p0 k batch);t;n;s;c;x;input;target
    t<1\downarrow\rhoTrainingImages \diamond n\leftarrowlt\divbatch \diamond s\leftarrow(n,batch)\rhot?t
    c}\leftarrow
    :While c<n
        x<c]s
        input\leftarrowTrainingImages[;x]
        target\leftarrowTrainingLabels[;x]
        p1 p0-\leftarrowk\timesgr p1 p0 target input
        c+<-1
    :EndWhile
    r\leftarrowp1 p0 k batch
```

epoch takes the two parameter matrices p 1 and p 0 , the k step factor and the batch size as arguments. (Make sure to choose batch as a divisor of 60000.) epoch runs through all of the training data once, calculating the gradient and taking a step for each batch. The result is similar to the argument but with the latest revised values for p1 and po. Here's a session using epoch.

```
    Orl&16807
    structure+10 16 784
    p\leftarrow(1+1\downarrowstructure) }\div\ddot{~}(-1\downarrowstructure){?(\alpha,\omega+1)\rho0}*"1\downarrowstructur
    obj\leftarrowleastsquares \diamond gr&gr_lsq \diamond activate\leftarrowsigmoid \diamond dactivate <dsigmoid
    (obj,correct)p
186791 10.09
    k<1 \diamond batch<600
    obj 2\rhop+epoch p,k batch
53637.3
    obj 2\rhop+epoch p
44263.4
    obj 2\rhop+epoch p
31410.6
    obj 2pp+epoch p
23878.9
    obj 2\rhop+epoch p
18463.9
    (obj,correct)2\rhop+epoch p
15092.9 88.63
```

We're clearly making good progress. After running six epochs, the objective has come down to about 8% of its starting value and the percentage of correct predictions has risen from 10% to 88%. We've been fortunate in our knob twiddling.

Running multiple epochs

Note that it's possible to run multiple epochs quite succinctly. This is because the result of one use of epoch is suitable as the argument to a consequent use of epoch. For example, the following statement executes three epochs:

```
    (obj,correct)2\rhop*epoch*3\vdash-p
10996
```

Alternatively, we can run multiple epochs with a halting criterion. The following runs epoch repeatedly until successive results have objective functions differing by less than 5.

```
halt<{(obj 2\rho\alpha)<5+obj 2\rho\omega}
```

(obj,correct)2pepoch*halt p
10373.7

A word of warning. Choosing a halting criterion based on the objective function has to be done with care. Often, early on in an estimation the objective function may come down very slowly before picking up speed later. In some cases the approximate gradient used may actually cause an increase in the objective. This sort of behaviour could lead to early termination. A hybrid approach is probably a good idea: run enough epochs until the percentage of correct guesses is better than 90%, then use a halting criterion similar to halt defined above.

Varying the batch size

We have chosen a batch size of 600 so far. Not a lot of thought went into this. Perhaps it will be useful to have a larger batch? Let's compare the improvements made with a selection of batch sizes: 300, 600, 3000,6000.
(obj, correct)2pepoch(3pp),300

```
9927.68 91.28
```

(obj, correct) 2 pepoch ($3 \rho p$), 600

10391.291

(obj, correct)2pepoch(3pp),3000
10847.290 .68
(obj, correct) 2 pepoch (3pp), 6000
10913.990 .6

This rough review suggests choosing smaller batch sizes. We'll continue with batch -300 .
$p \leftarrow(3 \rho p), 300$

Completing the estimation

We're now ready to continue the estimation. But, while we're at it, let's get a feel for performance. An elapsed time per epoch is probably a good measure:
$0.25 \times$ timer ' $p \times e p o c h \ddot{*} 4 \vdash{ }^{\prime}$ ' $^{\prime}$
1.1825
(obj, correct)2pp
8402.1692 .15

That's 1.2 seconds for each epoch of 100 steps. Let's do another 10 epochs.

```
    (obj,correct)2\rhop+epoch*10\vdashp
6688.83 93.54
```

For our purposes, this is a pretty good place to pause. We've run 23 epochs and have taken the objective down from 186791 to 6688 . The percentage of correct guesses has increased to better than 93%. Total run time is less than 30 seconds. Here's a graph of the results.

The model's results

The final value of p that we calculated has the parameters that we can use to make predictions with about 94% accuracy. Let's check a couple of examples:
image ${ }^{\prime} \downarrow$ T TestImages[; 66 67]


```
    predicted\leftarrow{{د巾\omega}\ddot{1r\phiff(2\rhop),c\omega} Predicted digits.}
    observed-{{د\triangleright\omega}\ddot{O1-ф\omega}}
    predicted TestImages[;66 67]
64
    observed TestImages[;66 67]
64
```

What about the images that we failed to match?

```
    pbad-incorrect 2pp
6 4 6
    20\rhobad
8 33 38 66 77 119 124 149 187 217 233 241 247 259 290 300 313 320 321 340
```

Here's what two of the incorrectly guessed images look like:
image ${ }^{\prime} \downarrow$ ゆTestImages[; 8 320]

These images are definitely a bit vague and the model's predictions (6 and 8) are not out of this world. The desired answers are 5 and 9 .

```
predicted TestImages[;8 320]
Predicted
```

68
observed TestLabels[;8 320]
Observed
59

Improving Performance

Profiling

Dyalog APL provides a nice tool, Dprofile, for tracking where the CPU time gets used. For example, we could break down the execution of epoch as follows:

```
\squareRL\leftarrow16807
structure<10 16 784
p\leftarrow(1+1\downarrowstructure)\div\dddot{~}(-1\downarrowstructure){?(\alpha,\omega+1)\rho0}*"1\downarrowstructure
obj&leastsquares \diamond gr*gr_lsq \diamond activate\leftarrowsigmoid \diamond dactivate+dsigmoid
Dprofile'clear' \diamond Dprofile'start'
t+epoch p
Oprofile'stop'
```

JProfile summary -code -lines (slightly edited)

Total time: 1289.2 msec

Element	msec	\%	Calls	Code
\#.epoch[7]	700.2	54.3	200	p1 p0-*k×gr p1 p0 target input
\#.epoch[5]	581.9	45.1	200	input<TrainingImages[;x]
\#.gr_lsq[9]	330.9	25.7	200	$r \leftarrow(e 1+. \times \phi t)(e 0+. \times \phi s)$
\#.gr_lsq[4]	317.2	24.6	200	a 0 -activate $\mathrm{z} 0 \leftarrow \mathrm{p} 0+. \times s \leftarrow 1$,input
\#.dactivate[0]	18.0	1.4	800	dactivate $\leftarrow\{\{\omega \times 1-\omega\}$ sigmoid $\omega\}$
\#.activate[0]	17.7	1.4	400	activate $\leftarrow\{\div 1+*-\omega\}$
\#.gr_lsq[8]	16.0	1.2	200	e0ヶ((\$0 1 1 p1)+.xe1) \times dactivate z0
\#.sigmoid[0]	15.1	1.2	400	sigmoid $-\{\div 1+*-\omega\}$
\#.gr_lsq[5]	11.2	0.9	200	a1*activate $z 1 \leftarrow p 1+. \times t+1, a 0$
\#.gr_lsq[10]	10.4	0.8	200	$r \div \leftarrow^{-1} 1 \uparrow 2 \uparrow$ (i input) , 1
\#.gr_lsq[7]	7.5	0.6	200	e $1 \leftarrow R \times$ dactivate $z 1$
\#.epoch[6]	3.7	0.3	200	target + TrainingLabels [; x] $\diamond n \leftarrow L \div b a t c h \diamond s \leftarrow(n, b a t c h) \rho t ? t$
\#.gr_lsq[6]	1.2	0.1	200	$\mathrm{R}+2 \times \mathrm{a} 1$-target
\#.epoch[4]	0.4	0.0	200	$\mathrm{x}+\mathrm{c}$ [s
\#.epoch[3]	0.2	0.0	201	:While c<n

Most of this comes as no surprise. The majority of time is spent calculating the gradient and revising the parameter arrays. However, the second call on line 5 of epoch does catch the eye. This is where the random batches are set up. Perhaps this code can be improved. Here's a revised epoch function. It removes the indexed selection from the loop, doing most of the work up front once.

An improved epoch function

```
r*epoch(p1 p0 k batch);t;n;s;c;x;input;target
    t<1\downarrow\rhoTrainingImages \diamond n<lt\divbatch \diamond s\leftarrow(n,batch)\rhot?t
    input<TrainingImages[;s] \diamond target<TrainingLabels[;s]
    c}<
:While c<n
        p1 p0-&k\timesgr p1 p0(target[;c;])(input[;c;])
        c++1
:EndWhile
    r\leftarrowp1 p0 k batch
```

Here＇s what the CPU profile looks like now：

```
Dprofile'clear' \diamond पprofile'start'
t+epoch p
Dprofile'stop'
```

JProfile summary -code - lines (slightly edited)
Total time: 1029.1 msec

Element	msec	\％	Calls	Code
\＃．epoch［5］	811.7	78.9	200	p1 p0－ヶkxgr p1 p0（target［；c；］）（input［；c；］）
\＃．gr＿lsq［9］	332.5	32.3	200	$r \leftarrow(e 1+. \times \phi t)(e 0+. \times \phi s)$
\＃．gr＿lsq［4］	316.8	30.8	200	a 0 －activate $\mathrm{z} 0 \leftarrow \mathrm{p} 0+. \times \mathrm{s} \leftarrow 1$ ；input
\＃．epoch［2］	214.4	20.8	1	input↔TrainingImages［；s］จ target↔TrainingLabels［；s］
\＃．dactivate［0］	18.1	1.8	800	dactivate $<\{\{\omega \times 1-\omega\}$ sigmoid ω \}
\＃．activate［0］	17.6	1.7	400	activate $\leftarrow\{\div 1+*-\omega\}$
\＃．gr＿lsq［8］	16.0	1.6	200	$e 0 \leftarrow(($（ $01 \downarrow p 1)+. \times e 1) \times$ dactivate $z 0$
\＃．sigmoid［0］	15.2	1.5	400	sigmoid $+\{\div 1+*-\omega\}$
\＃．gr＿lsq［5］	11.2	1.1	200	a1＋activate z1ヶp1＋．xt＋1－a0
\＃．gr＿lsq［10］	10.3	1.0	200	$r \div \leftarrow^{-1 \uparrow} \uparrow \uparrow$（oinput）， 1
\＃．gr＿lsq［7］	7.6	0.7	200	e1ヶR×dactivate z1
\＃．epoch［1］	1.3	0.1	1	$t \leftarrow-1 \uparrow \rho$ TrainingImages $\diamond n \leftarrow 1 \Gamma L t \div b a t c h \diamond s \leftarrow(n, b a t c h) \rho t ? t$
\＃．gr＿lsq［6］	1.2	0.1	200	$\mathrm{R}+2 \times \mathrm{a} 1-\mathrm{target}$
\＃．epoch［6］	0.2	0.0	200	$\mathrm{c}++1$
\＃．epoch［4］	0.2	0.0	201	：While c＜n
\＃．epoch［7］	0.1	0.0	200	：EndWhile

That＇s about a 20% improvement．Of course，we could keep going ．．．but later．

Variations

Increasing the size of the intermediate layer

We've used a hidden layer so far with 16 elements. Can we improve our results with more elements in this layer? Here's how to do this for a layer with 30 elements. This run does 50 epochs with $k \leftarrow 1$ and a batch size of 200 .

```
    Drl*16807
    structure<10 30 784
    p\leftarrow(1+1\downarrowstructure)\div\dddot{~}(-1\downarrowstructure){?(\alpha,\omega+1)\rho0}*"1\downarrowstructure
    obj\leftarrowleastsquares \diamond gr&gr_lsq \diamond activate*sigmoid \diamond dactivate&dsigmoid
    timer'p\leftarrowepoch*10\vdashp,1 200'
13.013
    (obj,correct)2\rhop
6247.57 93.82
    (obj,correct)2\rhop\leftarrowepoch*10\vdashp
4821.93 94.83
    (obj,correct)2\rhop+epoch*10\vdashp
4145.85 95.35
    (obj,correct)2\rhop*epoch*̈10\vdashp
3765.94 95.78
    (obj,correct)2\rhop<epoch*10\vdashp
3407.54 96.01
```

After 50 epochs and approximately 85 seconds, we have correct predictions for 96% of the images. That's a useful improvement. Of course, it raises new questions (Why 30? Why not 45 ?) which might be interesting to study, but not here, not now.

Using the cross entropy objective

Let's now do the estimation using the cross entropy objective. To do so, we'll use a variation of gr_l sq which uses the appropriate R value. It's gr_cren and it looks like this:

```
r*gr_cren(p1 p0 target input);s;t;z0;a0;z1;a1;R;e1;e0
^ Gradient for cross entropy objective
    a0<activate z0<p0+.xs+1;input
    a1+activate z1&p1+.xt+1;a0
    R+(a1-target ) \diva1 < 1-a1
    e1*R\timesdactivate z1
    e0\leftarrow(($0 1\downarrowp1)+.xe1) xdactivate z0
    r<(e1+.\times\phit)(e0+.\times\phis)
    r\div\leftarrow-1^2\uparrow(pinput),1
```

Now we can run an estimation as follows:

```
    Drl<16807
    structure<10 30 784
    p\leftarrow(1+1\downarrowstructure)\div\ddot{~}(-1\downarrowstructure){?(\alpha,\omega+1)\rho0}* 1\downarrowstructure
    obj*crossentropy \diamond gr&gr_cren \diamond activate\leftarrowsigmoid \diamond dactivate*dsigmoid
    timer'p+epoch**10\vdashp,1 200'
12.964
    (obj,correct)2\rhop
16593.9 95.5
    (obj,correct)2\rhop<epoch\ddot{*10\vdashp}
12813.9 96.27
    (obj,correct)2\rhop*epoch*10\vdashp
10838.3 96.56
    (obj,correct)2\rhop\leftarrowepoch*10\vdashp
9565.48 96.56
    (obj,correct)2\rhop+epoch*10\vdashp
8679.53 96.43
```

These results are revealing. Significantly, the estimation pretty well converges after 30 epochs with a slightly improved correct percentage. And, a little surprisingly, although further epochs do manage to reduce the objective, they do not improve the percentage of correct predictions.

What is the comparable least squares objective for this set of parameters?
leastsquares $2 \rho p$
2156.74

Using other activation functions

In the modelling we've done so far, we've used the sigmoid function $\{\div 1+*-\omega\}$ as the activation function. This has had the effect of forcing the values output in each layer to have values between 0 and 1 . We can show that with:

```
sigmoid -10-5 0510
```

0.00004539790 .006692850 .50 .9933070 .999955

This has had a "dampening" effect on calculated values, ensuring that they (particularly the gradient) do not get too large.

Relu activation

There are other possibilities for the activation function. One commonly used is the Rectified Linear Unit, which simply forces negative values to be zero. I confess to not knowing the theoretical appeal of this activation function but it gets a lot of use in practice, deservedly so. We can set things up with:

```
Orl<16807
structure<10 30 784
p<(1+1\downarrowstructure) }\div\ddot{~}(-1\downarrow\mathrm{ structure) {?( }\alpha,\omega+1)\rho0}* 1\downarrowstructur
obj\leftarrowleastsquares \diamond gr&gr_lsq \diamond activate\leftarrowrelu \diamond dactivate&drelu
```

The first task is to find a suitable value for k , the learning rate:
g*gr p,target input
$\uparrow\{(\omega, \text { obj }) p-\omega \times g\}^{\cdots} 0.080 .090 .10 .150 .2$
0.0854460 .6
0.0954376 .2
$0.1 \quad 54311.9$
0.1554304 .6
0.254852 .5

Let's proceed with $k \leftarrow 0.1$ and a batch size of 300 .
(obj,correct)2pp \leftarrow p,0.1 300
55821.115 .54

This seems to be making some progress. Let's run an entire epoch:
timer'p+epoch p^{\prime}
1.175
(obj, correct)2 ρp
1448689.24

That's excellent. After just a single epoch, we're up to 89% correct predictions. Continuing on:
(obj, correct) $2 \rho p \leftarrow e p o c h \ddot{*} 10 \vdash p$
5825.3895 .59
(obj, correct) $2 \rho p+e p o c h \ddot{*} 10 \vdash p$
4716.0796 .23
(obj, correct) $2 \rho p \leftarrow$ epoch $\ddot{*} 10 \vdash p$
4173.4296 .68
(obj, correct) $2 \rho p+e p o c h \ddot{*} 10 \vdash p$
3916.1996 .81
(obj, correct) $2 \rho p \leftarrow e p o c h \nVdash 10 \vdash p$
3665.9196 .94

So, after 51 epochs we've got up to close to 97%. Not bad, for about 60 seconds processing on a quite ordinary desktop computer.

Tanh activation

We can run a similar estimation for the hyperbolic tangent activation, as follows:

```
    Orl&16807
    structure\leftarrow10 30 784
    p\leftarrow(1+1\downarrowstructure)\div\ddot{~}(-1\downarrowstructure){?(\alpha,\omega+1)\rho0}"1\downarrowstructure
    obj*leastsquares \diamond gr&gr_lsq \diamond activate+tanh \diamond dactivate+dtanh
    (obj,correct)2\rhop\leftarrowp,0.1 300
55825.6 15.52
    timer'p+epoch p'
1.275
    (obj,correct)2\rhop
27012.6 83.36
    (obj,correct)2\rhop*epoch*10\vdashp
12353.8 92.2
    (obj,correct)2\rhop+epoch*10\vdashp
9906.35 92.88
    (obj,correct)2\rhop*epoch\ddot{*10\vdashp}
9621.64 92.94
    (obj,correct)2\rhop*epoch*10\vdashp
8992.91 93.12
    (obj,correct)2\rhop<epoch\ddot{*10\vdashp}
9228.26 93.27
    (obj,correct)2\rhop*epoch*10\vdashp
9146.85 93.42
```

This result seems to be not quite as good as the relu or sigmoid activations. It's a bit slower to get going and seems to take longer to make progress. But, we put no effort into finding a good learning rate or batch size and, with better values, perhaps it would have marched on to produce better results. Food for thought and experimentation.

Conclusion

We've done three fairly full estimations here. One with a sigmoid activation function and 50 epochs giving close to 96% correct predictions; one with a relu activation function and 51 epochs giving close to 97% correct predictions; and lastly one using the tanh activation (93%). Other variations are possible (e.g. alternative objective functions, more or larger layers) but, at the end of the day, I suspect that it's difficult to get much beyond 97% with this model.

Perhaps the model is less than perfect? That's very likely and you could spend all day (or the rest of your life) varying the technique and the parameters of the estimation, but ultimately you will hit a limit. To go further you need a better model. Which takes us to convolutional networks [1].

Reference

[0] "Machine Learning, An Interactive Approach", M. Powell, unpublished.
[1] "Convolutional Networks", M. Powell, unpublished.

Mike Powell
Victoria, BC, Canada
April 2020

