
The Handwritten 
Digits Model

Introduction
This tutorial explores how to estimate the parameters of the handwritten digits model. It does so by "opening the 
black box" using an interactive session. The objective is to delve into how to conduct an estimation rather than to 
find the absolute best search algorithm. The results are good, but they could (have) certainly be bettered.

Along the way, brief functions are defined which:

define the components of the model and show how the model feeds forward to make predictions;

calculate the gradient efficiently using back propagation;

demonstrate how the gradient can be applied in steps to reduce the objective;

define epochs to more efficiently use the data in the image dataset; and

twiddle the knobs to vary the run parameters.

This is an interactive session using APL. You can execute all the statements presented with little more than copy 
and paste. You're encouraged to explore on your own along the way.

The APL environment
Why APL? This provides a rich language ideally suited to the manipulation of matrices and higher order arrays. It 
is mature, stable, well documented and well understood. It's also interactive, which means that you can break a 
big problem down into smaller steps and examine what's happening along the way.

All of the text in the APL385 Unicode font is executable in APL. The particular APL used here is Dyalog APL 
17.1 with:

 ⎕io←0 

 ⎕pp←6 

 ⎕rl←16807 

 ]boxing on 

Dyalog APL is freely available for non-commercial use at www.dyalog.com. 
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Definitions
This tutorial makes use of a few utility functions. These are defined here with brief comment.

num←{×/⍴⍵} Number 
sum←{+/,⍵} Sum 

mean←{(sum÷num)⍵} Mean 
sop←{+/,⍺×⍵} Sum of product 
ssq←{sop⍨⍵} Sum of squares 
image←{28 28⍴(⊂⍵>0.5)⌷' *'} Rough display of an image sample 
timer←{∆∆j←1⌷⎕ai ⋄ ∆∆k←⍎⍵ ⋄ 0.001×∆∆j-⍨1⌷⎕ai} Execution time in seconds 
correct←{0.01 rnd 0.01×sum TestLabels∧⍉{⍵=⌈/⍵}⍤1⊢ % correct 
  ⍉ff ⍵,⊂TestImages} 

incorrect←{⍸∨⌿TestLabels≠⍉{⍵=⌈/⍵}⍤1⊢ Indices of incorrect matches 
  ⍉ff ⍵,⊂TestImages} 

The Model
The model used is based on the three layer model described more fully in [0]. It has an input layer, one intermedi-
ate layer and an output layer. The input layer is a vector of 784 black and white pixel intensities on a scale from 0 
to 1. The intermediate layer is a vector of length 16 and the output layer is a boolean vector of length 10.

The transitions between layers incorporate biases and an activation function:

tf←{activate ⍺+.×1⍪⍵} Transition function. 

The intermediate layer is calculated from the input layer by intermediate←p0 tf input where p0 is a transition 
matrix of shape 16 785. The output layer is produced from the intermediate layer in a similar way with 
output←p1 tf intermediate where p1 is a transition matrix of shape 10 17.

There are a number of possibilities for the activation function. We'll consider three:

sigmoid←{÷1+*-⍵} Sigmoid 1 / 1+e-x 
relu←{0⌈⍵} Rectified Linear Unit 
tanh←{7○⍵} Hyperbolic tangent 
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For each activation function we'll need to know its derivative. The corresponding derivatives are:

dsigmoid←{{⍵×1-⍵}sigmoid ⍵} 

drelu←{0<⍵}  
dtanh←{{(1+⍵)×1-⍵}tanh ⍵} 

The target is a boolean vector of length 10 with a single 1 marking the digit. The model's corresponding predic-
tions are made with the feed forward function:

ff←{⊃tf/⍵} 

Note that the feed forward function ff handles a matrix argument as input, as long as the number of samples ap-
pears as the final axis of its argument.

The objective function is the measure chosen to show how far a set of parameters deviates from optimal. We'll 
consider two:

leastsquares←{ssq target-ff ⍵,⊂input}

cren←{(⍺×⍟⍵)+(1-⍺)×⍟1-⍵} 

crossentropy←{-sum target cren ff ⍵,⊂input} 

The gradient function is based on the three layer gradient function from [0]. It is defined for the least squares ob-
jective as:

For the cross entropy objective, the gradient function is the same with just one change. The line calculating R 
needs to be: R←(a1-target)÷a1×1-a1.

Note that gr_lsq returns the mean gradient of all the samples in input. This standardizes the magnitude of the 
gradient's value, making it possible to compare gradients derived from inputs with differing numbers of samples.

 r←gr_lsq(p1 p0 target input);s;t;z0;a0;z1;a1;R;e1;e0 

  

 ⍝ Gradient for least squares objective 

 

   a0←activate z0←p0+.×s←1⍪input 

   a1←activate z1←p1+.×t←1⍪a0 

   R←2×a1-target 

   e1←R×dactivate z1 

   e0←((⍉0 1↓p1)+.×e1)×dactivate z0 

   r←(e1+.×⍉t)(e0+.×⍉s) 

   r÷←¯1↑2↑(⍴input),1
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Estimating the Parameters 
with Least Squares 

Let's start with some manual examination of the behaviour of the model with a least squares objective. First we'll 
initialize the structure and transition matrices; then set the objective function, its gradient, the activation function 
and its derivative.

 ⎕rl←16807 

 structure←10 16 784 

 ⍴¨p←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 
┌─────┬──────┐ 
│10 17│16 785│ 
└─────┴──────┘ 

 obj←leastsquares ⋄ gr←gr_lsq ⋄ activate←sigmoid ⋄ dactivate←dsigmoid 

 target input←TrainingLabels TrainingImages 

As a reference point, let's note the value for the objective function if we make no prediction at all (i.e. the output 
is all zero) is:

 ssq target 

60000 

And if we make a prediction with the randomly generated weights p:

 (obj,correct)p 

186791 10.09 

This tells us that making a prediction with this set of random weights actually produces a worse objective value 
than if we'd made no guess at all. The number of correct guesses is about 10% which is as we'd expect from pure 
guesswork (as there are 10 possible values in the output layer).

Iterating with a gradient
Let's now calculate the gradient and see the effect of taking some steps. We'll start with something really small to 
be true to the Taylor expansion assumption:

 g←gr p,target input 

 obj p-0.000001×g 

186791 

So much for that idea. It appears we've taken a really, really tiny step, producing no noticeable change in the ob-
jective. Let's be bolder:

 obj p←p-0.001×g 

186612 

That's definitely an improvement. We've moved the objective down, if only by 0.1%. Let's see if we can get a 
range of values that might help us get a better feeling for the k parameter.
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 k←0.001 

 ↑{(⍵,obj)p-⍵×g}¨k×10*⍳5 

 0.001 186433 

 0.01  184831 

 0.1   169591 

 1      85578.1 

10      54246 

We can certainly see there's progress to be made. Perhaps we should plunge right in and set k←10? Maybe not. 
This is just the beginning, so we should be cautious. Let's work with k←1. We'll update the parameters and calcu-
late a new gradient:

 k←1 

 p-←k×g 

 g←gr p,target input 

And again examine a spread of k values:

 ↑{(⍵,obj)p-⍵×g}¨k×10*¯2+⍳5 

  0.01 85245   

  0.1  82288.4 

  1    60117.1 

 10    59970.9 

100    60000 

Once more, it is tempting to set k←10. However, there's no rush. Let's be patient and keep k←1. This is probably a 
good point to formalize what happens when we take a step:

step←{⍵-k×gr ⍵,target input} 

This takes a vector of transition matrices and calculates the gradient for the entire training dataset. This is used to 
adjust the transition matrices using the global parameter k. Let's take one more step:

 obj p←step p 

60117.1 

And in order to take multiple steps:

 obj p←step⍣4⊢p 

54159.9 

Let's do another 4 steps and reassess the k parameter:

 obj p←step⍣4⊢p 

54052.8 

 g←gr p,target input 

 ↑{(⍵,obj)p-⍵×g}¨k×10*¯2+⍳5 

  0.01 54052.7 

  0.1  54052.2 

  1    54047.1 

 10    54047.8 

100    56222.8 
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This confirms that a k value of 1 is working well. Let's press on with another ten steps.

 (obj,correct)p←step⍣10⊢p 

54030.7 11.35 

Let's take stock of where we've got to. According to my counting, we've done 21 steps with some progress. The 
objective has come down to 54030.7 and the percentage of correct guesses has increased to 11.35%. That's not 
earth-shattering. It is understandable however. Early on in an estimation, the parameters can be expected to be far 
from any minimum of the objective. The gradient at such great distance is not necessarily pointing in a very pro-
ductive direction. Progress should be expected to be slow until the estimation gets closer to the minimum point.

What about performance? There's not much point in writing code to solve a problem if it takes forever to run. For-
tunately, that's not an issue so far. For example, the last executed line above takes 10 steps, each step calculating 
the gradients for both transition matrices using all 60000 samples, updates the transition matrices and calculates 
the sum of squares of the residuals. It takes just under 12 seconds.

Examining the gradient
It's interesting to get an idea of what the gradient looks like. That's not easy when there are 12730 elements. But 
we can tease out some bits of information.

Zeros are important. When they occur, they stop an element in one layer contributing to a change in an element of 
the next layer. If we start with the matrix g0 that transforms the inputs into the intermediate layer:

 g1 g0←(⊂0 1)↓¨gr p,target input Ignoring the biases 
 ∪0+.=g0 

16 0 

This tells us that the columns of the g0 gradient are either all zero or all non-zero.

Which elements of the original image grid are "dead"? By that we mean, they have a zero gradient and are un-
changing. We can use the image function to display this:

 ⊂image 0∧.=g0 
┌────────────────────────────┐ 
│************    ************│ 
│****                    ****│ 
│**                        **│ 
│**                         *│ 
│*                           │ 
│**                          │ 
│*                           │ 
│                            │ 
│                            │ 
│                            │ 
│                            │ 
│                            │ 
│                            │ 
│                            │ 
│                            │ 
│                            │ 
│                            │ 
│*                           │ 
│                            │ 
│                            │ 
│*                           │ 
│                            │ 
│                            │ 
│**                         *│ 
│**                         *│ 
│**                         *│ 
│***                       **│ 
│****                    ****│ 
└────────────────────────────┘ 
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This makes sense. As the MNIST images are centred in the 28 by 28 grid, we'd expect some of the peripheral cells 
not to be involved at all in making predictions.

What about the second gradient g1?

 0∊g1 No zeros in this matrix. 
0 

So, which parts of the grid are contributing the most to the changes brought about by the g0 gradient? Here's a 
way to look at that:

 t←ssq⍤1⊢⍉g0 

 ⊂image t∊200↑t[⍒t] 
┌────────────────────────────┐ 
│                            │ 
│                            │ 
│                            │ 
│                            │ 
│                            │ 
│               **           │ 
│          **********        │ 
│          ***********       │ 
│          ***********       │ 
│          ***********       │ 
│         **** *** ***       │ 
│         ***  ** ****       │ 
│        ***** ** ****       │ 
│        ***** *******       │ 
│       ******** ******      │ 
│       ******** ******      │ 
│       ***************      │ 
│        *************       │ 
│        ******* *****       │ 
│       ******** ****        │ 
│       *************        │ 
│       ******  ****         │ 
│        ****   ***          │ 
│           ***              │ 
│                            │ 
│                            │ 
│                            │ 
│                            │ 
└────────────────────────────┘ 

As we'd expect, the central cells are the biggest contributors.

Batches and epochs
Estimating the transition parameters is time consuming, largely due to the number of calculations it takes to calcu-
late the gradient. Here's a timing for the gradient of the entire training dataset:

 timer'g←gr p,target input' 

1.184 

Although this demonstrates the speed of APL's matrix operations, it could still turn out to be bad news if we have 
to do many iterations. An alternative technique, which works well in practice, is to use a cruder approximation to 
the gradient which can be calculated more quickly. This simply uses just a portion of the training images. Here's a 
timing for a gradient calculation using 1% of the training dataset.

 timer'g←gr p,(10 600↑TrainingLabels)(784 600↑TrainingImages)' 

0.011 

Page  of 7 18



If the approximation to the gradient holds up, then this makes it possible to proceed with many more steps in the 
same amount of time. The algorithm goes like this: choose a batch at random from the training images as input 
and target, calculate the gradient, take a step and repeat until all the training images have been used once. This is 
known as an epoch and is coded as follows:

epoch takes the two parameter matrices p1 and p0, the k step factor and the batch size as arguments. (Make sure 
to choose batch as a divisor of 60000.) epoch runs through all of the training data once, calculating the gradient 
and taking a step for each batch. The result is similar to the argument but with the latest revised values for p1 and 
p0. Here's a session using epoch.

 ⎕rl←16807 

 structure←10 16 784 

 p←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

 obj←leastsquares ⋄ gr←gr_lsq ⋄ activate←sigmoid ⋄ dactivate←dsigmoid 

 (obj,correct)p 

186791 10.09 

 k←1 ⋄ batch←600 

 obj 2⍴p←epoch p,k batch 

53637.3 

 obj 2⍴p←epoch p 

44263.4 

 obj 2⍴p←epoch p 

31410.6 

 obj 2⍴p←epoch p 

23878.9 

 obj 2⍴p←epoch p 

18463.9 

 (obj,correct)2⍴p←epoch p 

15092.9 88.63 

We're clearly making good progress. After running six epochs, the objective has come down to about 8% of its 
starting value and the percentage of correct predictions has risen from 10% to 88%. We've been fortunate in our 
knob twiddling.

r←epoch(p1 p0 k batch);t;n;s;c;x;input;target 

  t←1↓⍴TrainingImages ⋄ n←⌊t÷batch ⋄ s←(n,batch)⍴t?t 

  c←0 

  :While c<n 

     x←c⌷s 

     input←TrainingImages[;x] 

     target←TrainingLabels[;x] 

     p1 p0-←k×gr p1 p0 target input 

     c+←1 

  :EndWhile 

  r←p1 p0 k batch
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Running multiple epochs
Note that it's possible to run multiple epochs quite succinctly. This is because the result of one use of epoch is 
suitable as the argument to a consequent use of epoch. For example, the following statement executes three 
epochs:

 (obj,correct)2⍴p←epoch⍣3⊢p 

10996 

Alternatively, we can run multiple epochs with a halting criterion. The following runs epoch repeatedly until suc-
cessive results have objective functions differing by less than 5.

halt←{(obj 2⍴⍺)<5+obj 2⍴⍵} 

 (obj,correct)2⍴epoch⍣halt p 

10373.7 

A word of warning. Choosing a halting criterion based on the objective function has to be done with care. Often, 
early on in an estimation the objective function may come down very slowly before picking up speed later. In 
some cases the approximate gradient used may actually cause an increase in the objective. This sort of behaviour 
could lead to early termination. A hybrid approach is probably a good idea: run enough epochs until the percent-
age of correct guesses is better than 90%, then use a halting criterion similar to halt defined above.

Varying the batch size
We have chosen a batch size of 600 so far. Not a lot of thought went into this. Perhaps it will be useful to have a 
larger batch? Let's compare the improvements made with a selection of batch sizes: 300, 600, 3000, 6000.

 (obj,correct)2⍴epoch(3⍴p),300 

9927.68 91.28 

 (obj,correct)2⍴epoch(3⍴p),600 

10391.2 91 

 (obj,correct)2⍴epoch(3⍴p),3000 

10847.2 90.68 

 (obj,correct)2⍴epoch(3⍴p),6000 

10913.9 90.6 

This rough review suggests choosing smaller batch sizes. We'll continue with batch←300.

 p←(3⍴p),300 

Completing the estimation
We're now ready to continue the estimation. But, while we're at it, let's get a feel for performance. An elapsed time 
per epoch is probably a good measure:

 0.25×timer'p←epoch⍣4⊢p' 

1.1825 

 (obj,correct)2⍴p 

8402.16 92.15 

That's 1.2 seconds for each epoch of 100 steps. Let's do another 10 epochs.
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 (obj,correct)2⍴p←epoch⍣10⊢p 

6688.83 93.54 

For our purposes, this is a pretty good place to pause. We've run 23 epochs and have taken the objective down 
from 186791 to 6688. The percentage of correct guesses has increased to better than 93%. Total run time is less 
than 30 seconds. Here's a graph of the results.

The model's results
The final value of p that we calculated has the parameters that we can use to make predictions with about 94% 
accuracy. Let's check a couple of examples:

 image¨↓⍉TestImages[;66 67] 
┌────────────────────────────┬────────────────────────────┐ 
│                            │                            │ 
│                            │                            │ 
│             *              │                            │ 
│            **              │                            │ 
│           ***              │                            │ 
│          ***               │                     **     │ 
│          *                 │                    ***     │ 
│         **                 │                   ***      │ 
│         *         ***      │                  ***       │ 
│        **       *****      │        **         **       │ 
│        **      *** **      │       **         **        │ 
│        *      ***  **      │     ***         ***        │ 
│       **      **   **      │     **          ***        │ 
│       **     **    **      │     **          **         │ 
│       **     **    **      │     ***         **         │ 
│       *      **   **       │     ****      ****         │ 
│       **     *    **       │      *************         │ 
│       **     *   **        │       ***********          │ 
│        **    ** **         │         *      **          │ 
│        ***   ****          │                **          │ 
│         *********          │               ***          │ 
│          *******           │               ***          │ 
│                            │               ***          │ 
│                            │               **           │ 
│                            │               *            │ 
│                            │                            │ 
│                            │                            │ 
│                            │                            │ 
└────────────────────────────┴────────────────────────────┘ 
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predicted←{{⊃⍒⍵}⍤1⊢⍉ff(2⍴p),⊂⍵} Predicted digits. 
observed←{{⊃⍒⍵}⍤1⊢⍉⍵} Observed digits 
predicted TestImages[;66 67] 

6 4 

 observed TestImages[;66 67] 

6 4 

What about the images that we failed to match?

 ⍴bad←incorrect 2⍴p 

646 

 20⍴bad 

8 33 38 66 77 119 124 149 187 217 233 241 247 259 290 300 313 320 321 340 

Here's what two of the incorrectly guessed images look like:

 image¨↓⍉TestImages[;8 320] 
┌────────────────────────────┬────────────────────────────┐ 
│                            │                            │ 
│                            │                            │ 
│                            │                            │ 
│                            │                            │ 
│                      *     │                            │ 
│                *********   │                            │ 
│             ************   │            ***             │ 
│             ************   │           ******           │ 
│         *   ****           │           **  ***          │ 
│        **                  │           **   **          │ 
│       ***                  │            ** ***          │ 
│      ***                   │            *****           │ 
│      **                    │             ****           │ 
│     ***                    │              **            │ 
│     ***                    │              **            │ 
│     ******                 │              **            │ 
│     **************         │              **            │ 
│       ************         │              **            │ 
│           *********        │             **             │ 
│            *** ****        │             **             │ 
│            ********        │             **             │ 
│            *******         │             **             │ 
│             *****          │             **             │ 
│               *            │             **             │ 
│                            │             ****           │ 
│                            │              **            │ 
│                            │                            │ 
│                            │                            │ 
└────────────────────────────┴────────────────────────────┘ 

These images are definitely a bit vague and the model's predictions (6 and 8) are not out of this world. The desired 
answers are 5 and 9.

 predicted TestImages[;8 320] Predicted 
6 8 

 observed TestLabels[;8 320] Observed 
5 9 
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Improving Performance 

Profiling
Dyalog APL provides a nice tool, ⎕profile, for tracking where the CPU time gets used. For example, we could 
break down the execution of epoch as follows:

 ⎕RL←16807 

  structure←10 16 784 

 p←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

  obj←leastsquares ⋄ gr←gr_lsq ⋄ activate←sigmoid ⋄ dactivate←dsigmoid 

 

 ⎕profile'clear' ⋄ ⎕profile'start' 

 t←epoch p 

 ⎕profile'stop' 

 ]Profile summary -code -lines (slightly edited) 

Total time: 1289.2 msec 

Element                    msec      %  Calls  Code 
#.epoch[7]                700.2   54.3    200  p1 p0-←k×gr p1 p0 target input 
#.epoch[5]                581.9   45.1    200  input←TrainingImages[;x] 
#.gr_lsq[9]               330.9   25.7    200  r←(e1+.×⍉t)(e0+.×⍉s) 
#.gr_lsq[4]               317.2   24.6    200  a0←activate z0←p0+.×s←1⍪input 
#.dactivate[0]             18.0    1.4    800  dactivate←{{⍵×1-⍵}sigmoid ⍵} 
#.activate[0]              17.7    1.4    400  activate←{÷1+*-⍵} 
#.gr_lsq[8]                16.0    1.2    200  e0←((⍉0 1↓p1)+.×e1)×dactivate z0 
#.sigmoid[0]               15.1    1.2    400  sigmoid←{÷1+*-⍵} 
#.gr_lsq[5]                11.2    0.9    200  a1←activate z1←p1+.×t←1⍪a0 
#.gr_lsq[10]               10.4    0.8    200  r÷←¯1↑2↑(⍴input),1 
#.gr_lsq[7]                 7.5    0.6    200  e1←R×dactivate z1 
#.epoch[6]                  3.7    0.3    200  target←TrainingLabels[;x] 
                                               ⋄ n←⌊t÷batch ⋄ s←(n,batch)⍴t?t 
#.gr_lsq[6]                 1.2    0.1    200  R←2×a1-target 
#.epoch[4]                  0.4    0.0    200  x←c⌷s 
#.epoch[3]                  0.2    0.0    201  :While c<n 

Most of this comes as no surprise. The majority of time is spent calculating the gradient and revising the parame-
ter arrays. However, the second call on line 5 of epoch does catch the eye. This is where the random batches are 
set up. Perhaps this code can be improved. Here's a revised epoch function. It removes the indexed selection from 
the loop, doing most of the work up front once.
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An improved epoch function

Here's what the CPU profile looks like now:

 ⎕profile'clear' ⋄ ⎕profile'start' 

 t←epoch p 

 ⎕profile'stop' 

 ]Profile summary -code -lines  (slightly edited) 

Total time: 1029.1 msec 

Element              msec      %  Calls  Code 
#.epoch[5]          811.7   78.9    200  p1 p0-←k×gr p1 p0(target[;c;])(input[;c;]) 
#.gr_lsq[9]         332.5   32.3    200  r←(e1+.×⍉t)(e0+.×⍉s) 
#.gr_lsq[4]         316.8   30.8    200  a0←activate z0←p0+.×s←1⍪input 
#.epoch[2]          214.4   20.8      1  input←TrainingImages[;s] ⋄ target←TrainingLabels[;s] 
#.dactivate[0]       18.1    1.8    800  dactivate←{{⍵×1-⍵}sigmoid ⍵} 
#.activate[0]        17.6    1.7    400  activate←{÷1+*-⍵} 
#.gr_lsq[8]          16.0    1.6    200  e0←((⍉0 1↓p1)+.×e1)×dactivate z0 
#.sigmoid[0]         15.2    1.5    400  sigmoid←{÷1+*-⍵} 
#.gr_lsq[5]          11.2    1.1    200  a1←activate z1←p1+.×t←1⍪a0 
#.gr_lsq[10]         10.3    1.0    200  r÷←¯1↑2↑(⍴input),1 
#.gr_lsq[7]           7.6    0.7    200  e1←R×dactivate z1 
#.epoch[1]            1.3    0.1      1  t←¯1↑⍴TrainingImages 
                                         ⋄ n←1⌈⌊t÷batch ⋄ s←(n,batch)⍴t?t 
#.gr_lsq[6]           1.2    0.1    200  R←2×a1-target 
#.epoch[6]            0.2    0.0    200  c+←1 
#.epoch[4]            0.2    0.0    201  :While c<n 
#.epoch[7]            0.1    0.0    200  :EndWhile                                                        

That's about a 20% improvement. Of course, we could keep going ... but later.

r←epoch(p1 p0 k batch);t;n;s;c;x;input;target 

  t←1↓⍴TrainingImages ⋄ n←⌊t÷batch ⋄ s←(n,batch)⍴t?t 

  input←TrainingImages[;s] ⋄ target←TrainingLabels[;s] 

  c←0 

:While c<n 

    p1 p0-←k×gr p1 p0(target[;c;])(input[;c;]) 

    c+←1 

:EndWhile 

  r←p1 p0 k batch
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Variations 

Increasing the size of the intermediate layer
We've used a hidden layer so far with 16 elements. Can we improve our results with more elements in this layer? 
Here's how to do this for a layer with 30 elements. This run does 50 epochs with k←1 and a batch size of 200.

 ⎕rl←16807 

 structure←10 30 784 

 p←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

 obj←leastsquares ⋄ gr←gr_lsq ⋄ activate←sigmoid ⋄ dactivate←dsigmoid 

 timer'p←epoch⍣10⊢p,1 200' 

13.013 

 (obj,correct)2⍴p 

6247.57 93.82 

 (obj,correct)2⍴p←epoch⍣10⊢p 

4821.93 94.83 

 (obj,correct)2⍴p←epoch⍣10⊢p 

4145.85 95.35 

 (obj,correct)2⍴p←epoch⍣10⊢p 

3765.94 95.78 

 (obj,correct)2⍴p←epoch⍣10⊢p 

3407.54 96.01 

After 50 epochs and approximately 85 seconds, we have correct predictions for 96% of the images. That's a useful 
improvement. Of course, it raises new questions (Why 30? Why not 45?) which might be interesting to study, but 
not here, not now.

Using the cross entropy objective
Let's now do the estimation using the cross entropy objective. To do so, we'll use a variation of gr_lsq which uses 
the appropriate R value. It's gr_cren and it looks like this:

 r←gr_cren(p1 p0 target input);s;t;z0;a0;z1;a1;R;e1;e0 

 

 ⍝ Gradient for cross entropy objective 

 

   a0←activate z0←p0+.×s←1⍪input 

   a1←activate z1←p1+.×t←1⍪a0 

   R←(a1-target)÷a1×1-a1 

   e1←R×dactivate z1 

   e0←((⍉0 1↓p1)+.×e1)×dactivate z0 

   r←(e1+.×⍉t)(e0+.×⍉s) 

   r÷←¯1↑2↑(⍴input),1
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Now we can run an estimation as follows:

 ⎕rl←16807 

 structure←10 30 784 

 p←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

 obj←crossentropy ⋄ gr←gr_cren ⋄ activate←sigmoid ⋄ dactivate←dsigmoid 

 timer'p←epoch⍣10⊢p,1 200' 

12.964 

 (obj,correct)2⍴p 

16593.9 95.5 

 (obj,correct)2⍴p←epoch⍣10⊢p 

12813.9 96.27 

 (obj,correct)2⍴p←epoch⍣10⊢p 

10838.3 96.56 

 (obj,correct)2⍴p←epoch⍣10⊢p 

9565.48 96.56 

 (obj,correct)2⍴p←epoch⍣10⊢p 

8679.53 96.43 

These results are revealing. Significantly, the estimation pretty well converges after 30 epochs with a slightly im-
proved correct percentage. And, a little surprisingly, although further epochs do manage to reduce the objective, 
they do not improve the percentage of correct predictions.

What is the comparable least squares objective for this set of parameters?

 leastsquares 2⍴p 

2156.74 

Using other activation functions
In the modelling we've done so far, we've used the sigmoid function {÷1+*-⍵} as the activation function. This has 
had the effect of forcing the values output in each layer to have values between 0 and 1. We can show that with:

 sigmoid ¯10 ¯5 0 5 10 

0.0000453979 0.00669285 0.5 0.993307 0.999955 

This has had a "dampening" effect on calculated values, ensuring that they (particularly the gradient) do not get 
too large.

Relu activation

There are other possibilities for the activation function. One commonly used is the Rectified Linear Unit, which 
simply forces negative values to be zero. I confess to not knowing the theoretical appeal of this activation function 
but it gets a lot of use in practice, deservedly so. We can set things up with:

 ⎕rl←16807 

 structure←10 30 784 

 p←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

 obj←leastsquares ⋄ gr←gr_lsq ⋄ activate←relu ⋄ dactivate←drelu 
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The first task is to find a suitable value for k, the learning rate:

 g←gr p,target input 

 ↑{(⍵,obj)p-⍵×g}¨0.08 0.09 0.1 0.15 0.2 

0.08 54460.6 

0.09 54376.2 

0.1  54311.9 

0.15 54304.6 

0.2  54852.5 

Let's proceed with k←0.1 and a batch size of 300.

 (obj,correct)2⍴p←p,0.1 300 

55821.1 15.54 

This seems to be making some progress. Let's run an entire epoch:

 timer'p←epoch p' 

1.175 

 (obj,correct)2⍴p 

14486 89.24 

That's excellent. After just a single epoch, we're up to 89% correct predictions. Continuing on:

 (obj,correct)2⍴p←epoch⍣10⊢p 

5825.38 95.59 

 (obj,correct)2⍴p←epoch⍣10⊢p 

4716.07 96.23 

 (obj,correct)2⍴p←epoch⍣10⊢p 

4173.42 96.68 

 (obj,correct)2⍴p←epoch⍣10⊢p 

3916.19 96.81 

 (obj,correct)2⍴p←epoch⍣10⊢p 

3665.91 96.94 

So, after 51 epochs we've got up to close to 97%. Not bad, for about 60 seconds processing on a quite ordinary 
desktop computer.
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Tanh activation

We can run a similar estimation for the hyperbolic tangent activation, as follows:

 ⎕rl←16807 

 structure←10 30 784 

 p←(1+1↓structure)÷⍨(¯1↓structure){?(⍺,⍵+1)⍴0}¨1↓structure 

 obj←leastsquares ⋄ gr←gr_lsq ⋄ activate←tanh ⋄ dactivate←dtanh 

 

 (obj,correct)2⍴p←p,0.1 300 

55825.6 15.52 

 timer'p←epoch p' 

1.275 

 (obj,correct)2⍴p 

27012.6 83.36 

 (obj,correct)2⍴p←epoch⍣10⊢p 

12353.8 92.2 

 (obj,correct)2⍴p←epoch⍣10⊢p 

9906.35 92.88 

 (obj,correct)2⍴p←epoch⍣10⊢p 

9621.64 92.94 

 (obj,correct)2⍴p←epoch⍣10⊢p 

8992.91 93.12 

 (obj,correct)2⍴p←epoch⍣10⊢p 

9228.26 93.27 

 (obj,correct)2⍴p←epoch⍣10⊢p 

9146.85 93.42 

This result seems to be not quite as good as the relu or sigmoid activations. It's a bit slower to get going and 
seems to take longer to make progress. But, we put no effort into finding a good learning rate or batch size and, 
with better values, perhaps it would have marched on to produce better results. Food for thought and experimenta-
tion.
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Conclusion 

We've done three fairly full estimations here. One with a sigmoid activation function and 50 epochs giving close 
to 96% correct predictions; one with a relu activation function and 51 epochs giving close to 97% correct predic-
tions; and lastly one using the tanh activation (93%). Other variations are possible (e.g. alternative objective func-
tions, more or larger layers) but, at the end of the day, I suspect that it's difficult to get much beyond 97% with this 
model.

Perhaps the model is less than perfect? That's very likely and you could spend all day (or the rest of your life) 
varying the technique and the parameters of the estimation, but ultimately you will hit a limit. To go further you 
need a better model. Which takes us to convolutional networks [1].
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