
The Derivative Rules

Introduction
In 1979 Ken Iverson wrote a paper on the derivative as part of the ACM APL Conference [0]. That paper included 
a section summarizing the rules for the derivatives of compound formulations such as f×g. His summary omits the 
derivation of these rules. This article aims to restate these rules in more modern notation and provide derivations 
for Iverson's results. A brief summary of the rules is included as Appendix A.

Why are the derivative rules useful? 
Writing an operator to calculate a derivative numerically is not that difficult and it certainly works well for many 
functions, even quite elaborate ones. So why not use this operator for all derivative calculations? There are two 
reasons. Firstly, with arguments having many elements, it's tough to avoid excessive cpu calculation or memory 
usage. And secondly, there's the matter of accuracy. General purpose numeric differentiation is always an approx-
imation.

For many problems it's possible to write the derivative analytically using the derivative rules. Doing so can often 
reduce the resources required as well as improve the accuracy of the result.

The APL environment
All of the text in the APL385 Unicode font is executable in APL. The particular APL used here is Dyalog APL 
17.0 with:

 ⎕io←0 

 ⎕pp←6 

 ]boxing on 

Dyalog APL is freely available for non-commercial use at www.dyalog.com.

Shape analysis
It's useful to take an expression and work though its functional happenings to determine the shape of its result. 
Included here is an informal technique to record the steps in this process. It requires a convention.

If text is in red, it should be read (in APL) as "an object of shape ...".

For example:

 3×2 3 4 A scalar multiplying a rank 3 object 
2 3 4 results in a rank 3 object of the same shape. 
 (2 3 4⍴6){⍺∘.×⍵}⍤¯2⊢2 3 5 6⍴7 

» 2 3 4{⍺∘.×⍵}⍤¯2⊢2 3 5 6 

» 2 3,(4∘.×5 6) Outer products in a rank 2 frame. 
2 3 4 5 6 
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Supporting Operators and Functions
This article assumes that a number of operators and functions are already in place. Those that can be described 
briefly are summarized here. Those requiring more detail are described in Appendix B.

UTILITIES

min←{⌊/,⍵} Minimum 
max←{⌈/,⍵} Maximum 

num←{×/⍴⍵} Number 
sum←{+/,⍵} Sum 

mean←{(sum÷num)⍵} Mean 
sop←{+/,⍺×⍵} Sum of product 
ssq←{sop⍨⍵} Sum of squares 
rnd←{⍺×⌊0.5+⍵÷⍺} Round 
image←{28 28⍴(⊂⍵>127)⌷'' *''}' Display an image sample 
timer←{∆∆j←1⌷⎕ai ⋄ ∆∆k←⍎⍵ ⋄ 0.001×∆∆j-⍨1⌷⎕ai} Execution time in seconds 

CELLS OF AN ARRAY

The function cells boxes the cells of a specified rank from an array.

cells←{⊂⍤⍺⊢⍵} 

DISPLAY OF HIGHER RANK ARRAYS

Displaying higher rank results can be a bit awkward. It is more manageable if we box things up a bit and take ad-
vantage of ]boxing on, with:

disp←{⊂⍤2⊢⍵} 

COMPARING VALUES

At times we'd like to compare two arrays which, in theory, are identical. However, as one has (or both have) been 
calculated by numerical approximation, they may differ slightly. To check how close two values are, we use a 
simple statistic based on the ratio of corresponding elements being within 1% of each other. 

comp←{a b←∊¨⍵ ⋄ (⍴a)≢⍴b:0 ⋄ mean 0=0.99 1.01⍸a÷b+2×a×b=0} 

For example:

 a←?2 3 4⍴9 

 comp¨ (a a) (a(a+100)) (a(1.009×a)) (a(0.991×a)) ((5⍴0)(5⍴0)) ((5⍴1)(5⍴0)) 

1 0 1 1 1 0 
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The Derivative Operator 

The derivative operator
The derivative operator ∆ (introduced by Iverson in [0] and is discussed in [1]) acts on a monadic function f of 
rank s to produce a derived function df. As Iverson points out in [0], df has the same rank as f. (This comes di-
rectly from the definition of the derivative.)

 df←f ∆ 

What should we expect as the shape of the result of df? It's a function, just like any other, so, depending on the 
rank of its argument x, the shape of its result could have contributions from both a frame and an individual result. 
As the rank of df is the same as that of f, both produce results with frames of the same shape fr. This is:

 fr←(-s)↓⍴x 

The individual result for f comes from its application to an s-cell of x. It has shape sir:

 c←⊃s cells x A representative cell. 
 sir←⍴f c  

The individual result for df is a little more elaborate. It produces the sensitivity of each individual result relative 
to its corresponding cell c. The shape of df's result is:

 fr,sir,⍴c 

» ((-s)↓⍴x),(⍴f c),⍴c 

Avoiding surplus zeros
It's very important to observe that we need to know the rank of the function f to apply its derivative correctly. (In 
the J language this can be discovered with the adverb b.0. Unfortunately, Dyalog APL does not yet provide the 
means to get this information.) Below is a definition for a derivative operator. It assumes that the rank of its argu-
ment does not exceed the rank of the function –  i.e. no frame is produced. If we mistakenly use this operator with 
an argument of too great a rank, the result will be sparse, filled with many surplus zeros. For example:

 f←{⍵*2} A rank 0 function. 
 ⍴a←f ∆⍤0⊢x←3 4 5⍴⍳60 ∆ used correctly. 
3 4 5 

 ⍴b←f ∆ x ∆ making a bad assumption about the rank of 
3 4 5 3 4 5 the function f. 

We can readily see the surplus zeros as follows:

 sum a=0 

0  No zeros. 
 sum b=0 

3540  All but 60 elements are zero.

Note also that all the values in a do appear in b, just interspersed with many zeros:

 (,a)≡(,b)~0 

1 
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Definition
Here is a definition of a derivative operator ∆.

This definition of the derivative matches that given by Iverson in [0] with one caveat:

If the rank s of the function f is less than that of the argument x, then the derivative f ∆ must be 
applied with rank s.

Note that:

• The function argument f is executed by ∆. If f relies on global variables, then the values used may be those 
localized within ∆. This is likely to be incorrect. The problem can be pushed out of sight by prefixing every 
name used within the definition of ∆ with a very uncommon prefix (such as two underbar characters). For 
reasons of readability, the definition of ∆ above leaves out those prefix characters – although they should be 
present in the workspace definition.

• This definition works by looping through every element of the argument once. This could have been coded 
without a loop but doing so requires more memory. 

r←(f ∆)x;c;p;q;dx;d;j;n;sf;sx;t 

 

 ⍝ Derivative of function f at x. 

 ⍝ Assumes that the application of f to x does not produce a frame. 

 ⍝ Coding comments: 

 ⍝   Uses a loop to reduce memory usage. 

 ⍝   Careless regard by f for the locals used here could be fatal. 

 

 sf←⍴p←f x ⋄ sx←⍴x ⋄ dx←0.000001×{⍵+⍵=0}x←,x 

 r←(×/sx,sf)⍴p ⋄ c←0 ⋄ j←0 

 :While c<⍴dx 

     q←x ⋄ d←c⌷dx ⋄ (c⌷q)+←d 

     n←⍴t←,((f sx⍴q)-p)÷d ⋄ r[j+⍳n]←t 

     c+←1 ⋄ j+←n 

 :EndWhile 

 r←(sx,sf)⍴r ⋄ r←((⍴sf)⌽⍳⍴⍴r)⍉r
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Iverson's Rules for 
Scalar and Vector Functions 

Notation
Iverson chose glyphs to represent a number of new operators. In line with the technology available at the time (the 
IBM Selectric type ball), some are overstruck combinations of two APL characters. Here's a summary:

Function rank
Iverson chose to keep two integers for the definition of rank. He said:

"We will characterize the rank of a  
monadic function by a two-element vector,  
whose last element specifies the minimum  
rank of the argument on which the function  
is normally defined, and whose first  
specifies the rank of the result when the  
function is applied to an argument of  
minimum rank." 

In the discussion below, we'll follow the definition of rank for a monadic function as it is used today – a single 
integer corresponding to the last element of Iverson's definition. Where we need to refer to the first element of 
Iverson's definition we'll refer to the "result rank".
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Composition    F¨G  ←→  F{⍺⍺ ⍵⍵ ⍵}G 
!
Sum            F+G  ←→  F{(⍺⍺ ⍵)+⍵⍵ ⍵}G 
Product        F×G  ←→  F{(⍺⍺ ⍵)×⍵⍵ ⍵}G 
Transpose      F⍉G  ←→  F{(⍺⍺ ⍵)⍉⍵⍵ ⍵}G 
!
Inner Product  F⊕G  ←→  F{(⍺⍺ ⍵)+.×⍵⍵ ⍵}G 
Outer Product  F⊗G  ←→  F{(⍺⍺ ⍵)∘.×⍵⍵ ⍵}G

¯
¯
¯

!



Iverson's statement of the rules
Iverson stated the rules as follows:

Each of the rules uses an operator to produce a derived function which is supplied as the left argument to the de-
rivative operator ∆. The operators are all dyadic, three (plus-overbar, times-overbar and dieresis) taking functions 
F and G as the left and right arguments respectively and the last (power) taking the function F as its left argument 
and ¯1 as its right argument.

A useful starting point is to restate these identities taking advantage of today's APL operators and functions.

Scalar functions
The second table gives the rules for scalar functions.

For this table, F and G are scalar functions (of rank 0) having an individual cell of shape sic←⍬ and an individual 
result of sir←⍬. We can expect these functions to produce derivatives, which when applied to an argument x, pro-
duce a frame of shape fr←⍴x and an empty vector for the shape of both a cell and its corresponding result 
(sic←sir←⍬). The shape of the final result is just fr,sir,sic, in other words ⍴x.

At the time Iverson wrote, the concept of function trains was little understood. In fact, all four of the identities can 
be rewritten with trains, avoiding the introduction of new operators. Here's how an updated table of scalar func-
tion derivatives could look:
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"These operators allow us to express the extension!
to vector functions (of rank 1 1) of the usual sum,!
product, composition, and other rules for the derivatives!
of scalar functions:!
!
Sum           F+G∆ ←→ (F∆)+(G∆)!
              F⊗G∆ ←→ F⊗(G∆)⊕(0 2 1 ⍉(F∆⊗G))!
Product       F×G∆ ←→ 0 0 1¨⍉¨(F⊗G∆)!
Composition   F¨G∆ ←→ F∆¨G⊕(G∆)!
Inverse      F⍣¯1∆ ←→ ÷¨(F∆¨(F⍣¯1))!
              F⊕G∆ ←→ F⊗G∆⊕0 1!
!
It may be helpful to compare these identities with the!
simpler identities for scalar functions, noting, in particular!
that for a scalar function G the expressions G⊗(G∆) and!
G×(G∆) are equivalent:!
!
Sum           F+G∆ ←→ (F∆)+(G∆)!
Product       F×G∆ ←→ (F∆×G)+(G∆×F)!
Composition   F¨G∆ ←→ F∆¨G×(G∆)!
Inverse      F⍣¯1∆ ←→ ÷¨(F∆¨(F⍣¯1))!
"

¯

¯¯
¯

¯

¯ ¯
¯¯ ¯ ¯

¯

Sum           F+G∆ ←→ (F∆)+(G∆)          (f+g)∆ ←→ f ∆+g ∆"
Product       F×G∆ ←→ (F∆×G)+(G∆×F)      (f×g)∆ ←→ (f ∆×g)+(g ∆×f)"
Composition   F¨G∆ ←→ F∆¨G×(G∆)          (f g)∆ ←→ (f ∆ g)×g ∆"
Inverse      F⍣¯1∆ ←→ ÷¨(F∆¨(F⍣¯1))      f⍣¯1 ∆ ←→ ÷(f ∆ f⍣¯1)

¯ ¯
¯¯ ¯ ¯

¯



Note that:

• (f+g) and (f×g) are monadic forks. (f g) is monadic atop.

• f ∆+(g ∆) is a monadic fork evaluated as {(f ∆ ⍵}+g ∆ ⍵}.

• (f ∆×g)+g ∆×f is a monadic fork comprising of the functions (f ∆×g), + and g ∆×f. Further (f ∆×g) and (g 
∆×f) are themselves monadic forks. The result is evaluated as {((f ∆ ⍵)×g ⍵)+(g ∆ ⍵)×f ⍵}.

• (f ∆ g)×g ∆ is a monadic fork comprising of the functions (f ∆ g), × and g ∆. Further (f ∆ g) itself is a 
train, an example of monadic atop. The result is evaluated as {(f ∆ g ⍵)×g ∆ ⍵}.

• ÷(f ∆ f⍣¯1) is the reciprocal of f's derivative atop its inverse. It is evaluated as {÷(f ∆ f⍣¯1)⍵}.

SUM

 f←{⍵*2} ⋄ g←{1○⍵} 

 x←3 1 2 7 

 dfplusg←{(2×⍵)+2○⍵} The exact derivative of (f+g). 
 dfplusg x 

5.01001 2.5403 3.58385 14.7539 

 (f+g)∆⍤0⊢x 

5.01001 2.5403 3.58385 14.7539 

 rule←(f ∆)+g ∆ 

 rule⍤0⊢x 

5.01001 2.5403 3.58385 14.7539 

PRODUCT

 dftimesg←{(2×⍵×1○⍵)+(⍵*2)×2○⍵} The exact derivative of (f×g). 
 dftimesg x 

¯8.06321 2.22324 1.9726 46.139 

 rule←(f ∆×g)+g ∆×f 

 rule⍤0⊢x 

¯8.06321 2.22324 1.9726 46.1389 

COMPOSITION

 dfatopg←{2×(1○⍵)×2○⍵}  The exact derivative of (f g). 
 dfatopg x 

¯0.279415 0.909297 ¯0.756802 0.990607 

 rule←(f ∆ g)×g ∆ 

 rule⍤0⊢x 

¯0.279416 0.909297 ¯0.756805 0.990605 
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INVERSE

 f←*∘2  as dfns are not yet valid arguments to ⍣. 
 fi←f⍣¯1 The inverse of f. 
 dfi←{0.5×⍵*¯0.5} The exact derivative of the inverse of f. 
 f fi x 

3 1 2 7 

 fi f x 

3 1 2 7 

 dfi x 

0.288675 0.5 0.353553 0.18898 

 rule←÷(f ∆ fi) 

 rule⍤0⊢x 

0.288675 0.5 0.353553 0.188982 

Vector functions
The first table gives the rules for vector functions f and g (rank 1 producing vector results). As these are the ar-
guments to the operators used for sum, product, composition and inverse, the derived functions so produced are 
also vector functions. There are two other identities included, inner and outer product. The inner product is of rank 
1 producing a scalar result (what Iverson calls a scalar function of a vector). The outer product is also of rank 1, 
acting on vectors, but produces a result of rank 2. The six identities can be restated in more modern notation as 
follows:

Note that there are probably two typos in Iverson's table:

• The expression for the derivative of the outer product should have two terms, added together with the operator 
plus overbar not with the inner product operator ⊕.

• The expression for the derivative of an inverse uses the reciprocal function ÷. This should probably be the ma-
trix inverse ⌹. (In many quite ordinary situations we can expect to have zeros appear in the result of 
f ∆ f⍣¯1. These give errors with ÷ rather than the correct result which is obtained with ⌹.)

Here are some examples showing the application of the derivative of a vector function to a higher rank array.
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Sum           F+G∆ ←→ (F∆)+(G∆)"
              F⊗G∆ ←→ F⊗(G∆)⊕(0 2 1 ⍉(F∆⊗G)) 
Product       F×G∆ ←→ 0 0 1¨⍉¨(F⊗G∆)"
Composition   F¨G∆ ←→ F∆¨G⊕(G∆)"
Inverse      F⍣¯1∆ ←→ ÷¨(F∆¨(F⍣¯1))"
              F⊕G∆ ←→ F⊗G∆⊕0 1

¯

¯¯
¯

  (f+g)∆ ←→ f ∆+g ∆ 
(f∘.×g)∆ ←→ (f∘.×g ∆)+0 2 1⍉f ∆∘.×g 
  (f×g)∆ ←→ 0 0 1⍉(f∘.×g)∆ 
  (f g)∆ ←→ (f ∆ g)+.×g ∆ 
  f⍣¯1 ∆ ←→ ⌹f ∆ f⍣¯1 
(f+.×g)∆ ←→ 0 1 tc⍨(f∘.×g)∆ 

 



SUM

 f←{×\⍵}⍤1 ⋄ g←{1○⍵}⍤1 

 ⍴a←(f+g)∆⍤1⊢x←2 3⍴⍳6 

2 3 3 

 disp a 
┌────────────────────┬───────────────────────────┐ 
│2 0         0       │ 0.0100073  0        0     │ 
│1 0.540302  0       │ 4          2.34636  0     │ 
│2 0        ¯0.416148│20         15       12.2837│ 
└────────────────────┴───────────────────────────┘ 

 rule←f ∆+g ∆ 

 ⍴b←rule⍤1⊢x 

2 3 3 

 comp a b 

1 

PRODUCT

 ⍴a←(f×g)∆⍤1⊢x 

2 3 3 

 disp a 
┌──────────────┬─────────────────────────┐ 
│1.00000E¯6 0 0│ ¯2.82886   0      0     │ 
│8.41471E¯1 0 0│ ¯3.02721 ¯10.1141 0     │ 
│1.81859E0  0 0│¯19.1785  ¯14.3839 5.5128│ 
└──────────────┴─────────────────────────┘ 

 rule←0 0 1⍉(f∘.×g)∆ 

 ⍴b←rule⍤1⊢x 

2 3 3 

 comp a b 

1 

COMPOSITION

 ⍴a←(f g)∆⍤1⊢x 

2 3 3 

 disp a 
┌────────────┬───────────────────────────────┐ 
│1        0 0│¯0.989993  0          0        │ 
│0.841471 0 0│ 0.749229 ¯0.092242   0        │ 
│0.765147 0 0│¯0.718454  0.0884531 ¯0.0302954│ 
└────────────┴───────────────────────────────┘ 

 rule←(f ∆ g)+.×g ∆ 

 ⍴b←rule⍤1⊢x 

2 3 3 

 comp a b 

1 
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INVERSE

 f←*∘2 

 ⍴a←(f⍣¯1)∆⍤1⊢x+1 x+1 to avoid zeros in the argument. 
2 3 3 

 disp a 
┌─────────────────────┬──────────────────────┐ 
│0.5 0        0       │0.25 0        0       │ 
│0   0.353553 0       │0    0.223607 0       │ 
│0   0        0.288675│0    0        0.204124│ 
└─────────────────────┴──────────────────────┘ 

 rule←⌹(f ∆ f⍣¯1) 

 ⍴b←rule⍤1⊢x+1 

 comp a b 

1 

OUTER PRODUCT

 f←{⍵*2}⍤1 ⋄ g←{1○⍵}⍤1 

 ⍴a←(f∘.×g)∆⍤1⊢x 

2 3 3 3 

 disp a 
┌─────────────────────────┬──────────────────────────┬──────────────────────────┐ 
│1.00000E¯12 0 0          │1 0        0              │4 0       0               │ 
│8.41471E¯7  0 0          │0 2.22325  0              │0 2.16121 3.36589         │ 
│9.09297E¯7  0 0          │0 1.8186  ¯0.416148       │0 0       1.9726          │ 
├─────────────────────────┼──────────────────────────┼──────────────────────────┤ 
│¯8.06323  0       0      │¯15.8399   1.12896 0      │¯24.7498   0       1.4112 │ 
│¯4.54082 ¯5.88278 0      │  0      ¯16.5127  0      │  0      ¯16.3411 ¯7.56803│ 
│¯5.75355  0       2.55298│  0       ¯7.6714  4.53863│  0        0      ¯2.49762│ 
└─────────────────────────┴──────────────────────────┴──────────────────────────┘ 

 rule←(f∘.×g ∆)+0 2 1⍉f ∆∘.×g 

 ⍴b←rule⍤1⊢x 

2 3 3 3 

 comp a b 

0.981481 

INNER PRODUCT

 x←2 3⍴3 1 4 1 5 9 

 ⍴a←(f+.×g)∆⍤1⊢x 

2 3 

 a 
¯8.06323  2.22325 ¯16.5127 
 2.22325 ¯2.49762 ¯66.3837 

 rule←0 1 tc⍨(f∘.×g)∆ 

 ⍴b←rule⍤1⊢x 

2 3 

 comp a b 

1 
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Taylor expansion 

The establishment of the derivative rules relies on the Taylor expansion of a function f about a value x. The com-
plete expansion has terms in all the derivatives but, for our purposes, we are only interested in the first derivative. 
We're looking for a function that will allow us to write something like:

 f x+dx ←→ (f x)+dx{...}f ∆ x 

Here's an example of the sort of function f we might be interested in:

 f←{(ssq,mean,max)⍵}⍤2 This is a rank 2 function. 
 ⎕rl←16807 

 disp x←?2 5 4⍴9 
┌───────┬───────┐ 
│3 2 3 0│0 5 5 8│ 
│4 2 1 1│1 5 1 6│ 
│4 8 7 3│3 5 2 5│ 
│1 1 5 7│6 0 7 5│ 
│0 8 8 8│3 0 2 4│ 
└───────┴───────┘ 

 dx←0.000001×x 

 ⎕pp←10 It is helpful to be able to see more precision. 
 f x 
450 3.8  8 
379 3.65 8 

 f x+dx 
450.0009   3.8000038  8.000008 
379.000758 3.65000365 8.000008 

So far we have a function f which calculates three simple statistics of an array argument. It is of rank 2 and when 
applied to x, which is of rank 3, produces a result of shape 2 3.

The rank of the derived function produced as the derivative of f is 2, the same as f. With a rank 3 array argument 
there will be a frame as part of the derivative's result. Therefore, to obtain the correct result, we should apply the 
derived function f ∆ as follows:

 ⍴a←f ∆⍤2⊢x 

2 3 5 4 

This corresponds to a frame of shape 2, an individual result of shape 3 and an individual cell of shape 5 4:

 disp 0.01 rnd a 
┌───────────┬───────────────────┬───────┐ 
│6  4  6  0 │0.05 0.05 0.05 0.05│0 0 0 0│ 
│8  4  2  2 │0.05 0.05 0.05 0.05│0 0 0 0│ 
│8 16 14  6 │0.05 0.05 0.05 0.05│0 1 0 0│ 
│2  2 10 14 │0.05 0.05 0.05 0.05│0 0 0 0│ 
│0 16 16 16 │0.05 0.05 0.05 0.05│0 1 1 1│ 
├───────────┼───────────────────┼───────┤ 
│ 0 10 10 16│0.05 0.05 0.05 0.05│0 0 0 1│ 
│ 2 10  2 12│0.05 0.05 0.05 0.05│0 0 0 0│ 
│ 6 10  4 10│0.05 0.05 0.05 0.05│0 0 0 0│ 
│12  0 14 10│0.05 0.05 0.05 0.05│0 0 0 0│ 
│ 6  0  4  8│0.05 0.05 0.05 0.05│0 0 0 0│ 
└───────────┴───────────────────┴───────┘ 
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The first column has two matrices. These correspond to the variation of the ssq value with slight adjustments to 
the argument x. The centre column shows how the mean changes. With 20 values in each matrix, this tells us that 
a unit change in one element of x will produce a ÷20 change in the mean. The last column shows that a slight ad-
justment in x causes a unit change for a maximum value, otherwise zero (i.e. 1s indicating where the largest val-
ues occur).

We've been careful so far to specify the rank for f ∆. What does the result look like if we leave this out? This pro-
duces a rank 5 array and we need to take a little more care with its display.

 ⍴b←f ∆ x 

2 3 2 5 4 

 disp disp 0.01 rnd b 
┌─────────────────────────────┬─────────────────────────────┐ 
│┌───────────────────┬───────┐│┌───────┬───────────────────┐│ 
││6  4  6  0         │0 0 0 0│││0 0 0 0│ 0 10 10 16        ││ 
││8  4  2  2         │0 0 0 0│││0 0 0 0│ 2 10  2 12        ││ 
││8 16 14  6         │0 0 0 0│││0 0 0 0│ 6 10  4 10        ││ 
││2  2 10 14         │0 0 0 0│││0 0 0 0│12  0 14 10        ││ 
││0 16 16 16         │0 0 0 0│││0 0 0 0│ 6  0  4  8        ││ 
│├───────────────────┼───────┤│├───────┼───────────────────┤│ 
││0.05 0.05 0.05 0.05│0 0 0 0│││0 0 0 0│0.05 0.05 0.05 0.05││ 
││0.05 0.05 0.05 0.05│0 0 0 0│││0 0 0 0│0.05 0.05 0.05 0.05││ 
││0.05 0.05 0.05 0.05│0 0 0 0│││0 0 0 0│0.05 0.05 0.05 0.05││ 
││0.05 0.05 0.05 0.05│0 0 0 0│││0 0 0 0│0.05 0.05 0.05 0.05││ 
││0.05 0.05 0.05 0.05│0 0 0 0│││0 0 0 0│0.05 0.05 0.05 0.05││ 
│├───────────────────┼───────┤│├───────┼───────────────────┤│ 
││0 0 0 0            │0 0 0 0│││0 0 0 0│0 0 0 1            ││ 
││0 0 0 0            │0 0 0 0│││0 0 0 0│0 0 0 0            ││ 
││0 1 0 0            │0 0 0 0│││0 0 0 0│0 0 0 0            ││ 
││0 0 0 0            │0 0 0 0│││0 0 0 0│0 0 0 0            ││ 
││0 1 1 1            │0 0 0 0│││0 0 0 0│0 0 0 0            ││ 
│└───────────────────┴───────┘│└───────┴───────────────────┘│ 
└─────────────────────────────┴─────────────────────────────┘ 

This shows twelve (i.e. ×/¯2↓⍴b) 5 by 4 matrices. The six matrices highlighted in yellow are the same as those 
created by a←f ∆⍤2⊢x; the other six are entirely zero. The zero matrices come about when ∆ tries to find the sensi-
tivity of the result of one cell to variations in a different cell. In a sense they are wasted as they produce no new 
information and are always zero.

How do we produce an expression for a first order Taylor expansion for the example introduced above? Bear in 
mind that we are looking for something of the form:

 f x+dx ←→ (f x)+dx{...}f ∆⍤2⊢x 

Note that:

• An incremental amount dx{...}f ∆⍤2⊢x is to be added to the result of f x. This is of shape  2 3.

• The differential amount dx is of shape 2 5 4.

• The derivative f ∆⍤2, evaluated at x, is of shape 2 3 5 4.

A suitable expression is not too difficult to find with an appropriate use of the rank operator. The Taylor expansion 
to first order is then:

 k←2-⍴⍴x 

 (f x)+dx tip⍤k⊢f ∆⍤2⊢x 
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450.0009   3.8000038  8.000032 
379.000758 3.65000365 8.000008 

which compares with:

 f x+dx 
450.0009   3.8000038  8.000008 
379.000758 3.65000365 8.000008 

So, for this example where (⍴⍴x)>k, the expression for the Taylor expansion of f about x is:

f x+dx ←→ (f x)+dx tip⍤(k-⍴⍴x)⊢f ∆⍤k⊢x 

and where (⍴⍴x)≤k, the expression is:

f x+dx ←→ (f x)+dx tip f ∆ x 

Fortunately, it is possible to combine these two rules into one, by using the rank operator to limit the rank of the 
data values. So, if k is the rank of the function f:

The example now becomes:

 (f x)+dx {⍺ tip f ∆ ⍵}⍤2⊢x 
450.0009   3.8000038  8.000032 
379.000758 3.65000365 8.000008 

 comp (f x+dx) ((f x)+dx{⍺ tip f ∆ ⍵}⍤2⊢x) 

1 

 ⎕pp←6 

f x+dx ←→ (f x)+dx{⍺ tip f ∆ ⍵}⍤k⊢x
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Derivation of the Rules 

Strict conformance
APL has rules about how the arguments to functions must conform. For example, if we wish to add two arrays 
together, they need to be of the same shape. Of course that's the "strict" rule and there is an exception. In most 
cases, if one of the arguments x is a single value (1≡≢x), it is repeated as necessary to match the other argument. 
So, we can write:

 3+⍳5 

3 4 5 6 7 

 (1 1 1 1⍴3)+⍳5 

3 4 5 6 7 

 (4 9⍴⍳36)+.×2 

72 234 396 558 

This is very handy but complicates considerably the discussion of the derivative rules. We won't allow it, instead 
assuming strict conformance.

Sum (and difference) rule
For two functions f and g, of rank s and t respectively, consider the difference in the value of the function (f+g) 
at two points infinitesimally close together, x and x+dx. The train f+g is of unbounded rank, simply passing its 
argument x to both f and g. In order to conform, the shapes of the results of f and g must match.

 ((f+g)x+dx)-(f+g)x 

» ((f x+dx)+g x+dx)-(f x)+g x 

As shorthand, let's write fx←f x, gx←g x, dfx←dx{⍺ tip f ∆ ⍵}⍤s⊢x and dgx←dx{⍺ tip g ∆ ⍵}⍤t⊢x.

» fx+gx+dfx+dgx-fx+gx Using the first order Taylor expansions 
  for both f and g about x. 
» (dx{⍺ tip f ∆ ⍵}⍤s⊢x)+dx{⍺ tip g ∆ ⍵}⍤t⊢x

This general expression cannot be simplified further unless we require that s≡t and that both s and t are not less 
than the rank of the argument x. When this is so, we have:

» (dx tip f ∆ x)+dx tip g ∆ x 

» dx tip(f ∆ x)+g ∆ x As (a tip b)+a tip c ←→ a tip b+c 
» dx tip(f ∆+g ∆)x 

As this is true for arbitrary x and dx:

(f+g)∆ ←→ (f ∆+g ∆) with s≡t and 
s≥⍴⍴x 

(f-g)∆ ←→ (f ∆-g ∆)
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For example:

 x←2 3 4⍴3 1 4 2 7 1 

 f←{⍵*2}⍤1 ⋄ g←{⍵*3}⍤1 

 ⍴a←(f+g)∆⍤1⊢x 

2 3 4 4 

 rule←f ∆+g ∆ 

 ⍴b←rule⍤1⊢x 

2 3 4 4 

 comp a b 

1 

Product rule
For two functions f and g, of rank s and t respectively, consider the difference in the value of the function (f×g) 
at two points infinitesimally close together, x and x+dx. The train f×g is of unbounded rank, simply passing its 
argument x to both f and g. In order to conform, the shapes of the results of f and g must match.

 ((f×g)x+dx)-(f×g)x 

» ((f x+dx)×g x+dx)-(f x)×g x 

As shorthand, let's write fx←f x, gx←g x, dfx←dx{⍺ tip f ∆ ⍵}⍤s⊢x and dgx←dx{⍺ tip g ∆ ⍵}⍤t⊢x.

» ((fx+dfx)×gx+dgx)-fx×gx Using the first order Taylor expansion 
  for both f and g about x.
» (fx×gx)+(fx×dgx)+(dfx×gx)+(dfx×dgx)-fx×gx Expanding the product of two sums.   

» (fx×dgx)+dfx×gx Cancelling the first and last terms 
  and ignoring the 2nd order term in dx. 
» ((f x)×dx{⍺ tip g ∆ ⍵}⍤t⊢x) Exchanging the arguments to × in the 
 +(g x)×dx{⍺ tip f ∆ ⍵}⍤s⊢x second term. 

This general expression cannot be simplified further unless we require that s≡t and that both s and t are not less 
than the rank of the argument x. When this is so, we have:

» ((f x)×dx tip g ∆ x)+(g x)×dx tip f ∆ x 

» (dx tip (f x) xp g ∆ x)+dx tip (g x) xp f ∆ x As a×b tip c ←→ b tip a xp c 
» dx tip((f x) xp g ∆ x)+(g x) xp f ∆ x Combining terms with: 
  (a tip b)+a tip c ←→ a tip b+c 

» dx tip((f×g ∆)+g×f ∆)x 

As this is true for arbitrary x and dx:

If s<⍴⍴x, f and g both create frames and we must apply the rule with an explicit rank:  ((f xp g ∆)+g xp f 
∆)⍤s. We can test this with the sample values for f, g and x from above:

(f×g)∆ ←→ (f xp g ∆)+g xp f ∆  with s≡t and 
s≥⍴⍴x
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 ⍴a←(f×g)∆⍤1⊢x 

2 3 4 4 

 rule←(f xp g ∆)+g xp f ∆ 

 ⍴b←rule⍤1⊢x 

2 3 4 4 

 comp a b 

1 

Quotient rule
For two functions f and g, of rank s and t respectively, consider the difference in the value of the function (f÷g) 
at two points infinitesimally close together, x and x+dx. The train f÷g is of unbounded rank, simply passing its 
argument x to both f and g. In order to conform, the shapes of the results of f and g must match.

 ((f÷g)x+dx)-(f÷g)x 

» ((f x+dx)÷g x+dx)-(f x)÷g x As (f÷g)x ←→ (f x)÷g x 

As shorthand, let's write fx←f x, gx←g x, dfx←dx{⍺ tip f ∆ ⍵}⍤s⊢x and dgx←dx{⍺ tip g ∆ ⍵}⍤t⊢x.

» ((fx+dfx)÷gx+dgx)-fx÷gx Using the first order Taylor expansion 
  for both f and g about x.  

» ((fx+dfx)÷gx×1+dgx÷gx)-fx÷gx 

» (((fx÷gx)+dfx÷gx)÷1+dgx÷gx)-fx÷gx 

» (((fx÷gx)+dfx÷gx)×1-dgx÷gx)-fx÷gx As {÷1+⍵} ←→ {1-⍵} for small arguments. 
» ((fx÷gx)+(dfx÷gx)-((fx÷gx)×dgx÷gx)+dfx×dgx÷gx×gx)-fx÷gx 

» ((dfx÷gx)-(fx÷gx)×dgx÷gx)+dfx×dgx÷gx×gx Cancelling the first and last terms.
» (dfx÷gx)-(fx÷gx)×dgx÷gx  Ignoring the 2nd order term in dx.
» ((dx{⍺ tip f ∆ ⍵}⍤s⊢x)÷gx)-(fx÷gx)×(dx{⍺ tip g ∆ ⍵}⍤t⊢x)÷gx 

This general expression cannot be simplified further unless we require that s≡t and that both s and t are not less 
than the rank of the argument x. When this is so, we have:

» ((dx tip f ∆ x)÷gx)-(fx÷gx)×(dx tip g ∆ x)÷gx 

» (dx tip (f ∆ x)xp÷gx)-(fx÷gx)×dx tip (g ∆ x)xp÷gx 

» (dx tip (f ∆ x)xp÷gx)-dx tip (fx÷gx)xp(g ∆ x)xp÷gx As a×b tip c ←→ b tip a xp c 
» dx tip ((f ∆ x)xp÷gx)-(fx÷gx)xp(g ∆ x)xp÷gx  As (a tip b)-a tip c ←→ a tip b-c 
» dx tip ((f ∆ x)-(fx÷gx)xp g ∆ x)xp÷gx 

» dx tip (((f ∆)-(f÷g)xp g ∆)xp(÷g))x 

As this is true for arbitrary x and dx:

(f÷g)∆ ←→ ((f ∆)-(f÷g)xp g ∆)xp(÷g) with s≡t and s≥⍴⍴x

Page  of 16 34



For example:

 f←{⍵+2} ⋄ g←{⍵*3} 

 (f÷g)∆⍤0⊢3 4 5 

¯0.148148 ¯0.0546874 ¯0.0256 

 rule←((f ∆)-(f÷g)xp g ∆)xp(÷g) 

 rule⍤0⊢3 4 5 

¯0.148148 ¯0.0546874 ¯0.0256 

Outer product rule
The outer product (f∘.×g) is defined for monadic functions f and g of rank s and t respectively. It is of un-
bounded rank, producing a result without a frame for an argument of any rank. Consider the difference in the val-
ue of the function (f∘.×g) at two points infinitesimally close together, x and x+dx.

 ((f∘.×g)x+dx)-(f∘.×g)x 

» ((f x+dx)∘.×g x+dx)-(f x)∘.×g x 

As shorthand, let's write fx←f x, gx←g x, dfx←dx{⍺ tip f ∆ ⍵}⍤s⊢x and dgx←dx{⍺ tip g ∆ ⍵}⍤t⊢x.

» ((fx+dfx)∘.×gx+dgx)-fx∘.×gx Approximating f x+dx and g x+dx as 
  first order Taylor expansions about x.
» (fx∘.×gx)+(fx∘.×dgx)+(dfx∘.×gx)+(dfx∘.×dgx) Expanding (a+b)∘.×c+d as 
 -fx∘.×gx (a∘.×c)+(a∘.×d)+(b∘.×c)+b∘.×d 

» (fx∘.×dgx)+dfx∘.×gx Cancelling the first and last terms and 
  eliminating the second order term in dx.

At this point it's useful to analyze the shapes of the two terms in this expression. Let's first define some variables 
to use for the various shapes we'll encounter.

Object of shape where

fx←f x ff,rf sx←⍴x 
ff←(-s)↓sx 
rf←⍴f⊃s cells x

dfx←f ∆⍤s⊢x ff,rf,cf cf←(-s)↑sx

gx←g x fg,rg fg←(-t)↓sx 
rg←⍴g⊃t cells x

dgx←g ∆⍤t⊢x fg,rg,cg cg←(-t)↑sx
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Here are the two terms that make up the current expression:

As we'd expect, both produce objects of the same shape which can be added together.

In order to derive a rule for the derivative of the outer product, we'd like to combine these two terms into one of 
the form dx tip{rule ⍵}. If we can construct this, we'll be able to assert that as dx and x are quite general, rule 
must hold for the derivative of the outer product. Unfortunately, this is not possible in general. We need to impose 
the restrictions seen in several of the other derivative rules The functions f and g need to be of the same rank 
(s=t) and they should only be applied where they do not produce a frame. This means that the variables we're us-
ing for the shapes of objects need to be redefined.

The expression for the derivative now becomes:

» (fx∘.×dx tip g ∆ x)+(dx tip f ∆ x)∘.×gx 

  rf   sx     rg,sx   sx     rf,sx    rg 

We can put the first term in the desired form as a∘.×b tip c ←→ b tip a∘.×c:

» (dx tip fx∘.×g ∆ x)+(dx tip f ∆ x)∘.×gx 

  sx     rf   rg,sx   sx     rf,sx    rg 

The first term is rf,rg. Unfortunately, a rearrangement of the second term to dx tip (f ∆ x)∘.×gx is no good 
as it calls for sx tip rf,sx,rg which fails in general. Luckily this can be fixed by including a transpose to get 
the axes in the right order, as follows:

order←{⍋⍋((⍴⍴f ⍵),(⍴⍴⍵),⍴⍴g ⍵)/0 2 1} 

» dx tip fx∘.×g ∆ x)+(order x)⍉(f ∆ x)∘.×gx 

fx∘.×dgx 

fx∘.×dx{⍺ tip g ∆ ⍵}⍤t⊢x 

ff,rf∘.×sx{⍺ tip g ∆ ⍵}⍤t⊢sx 

ff,rf∘.×fg,(cg tip g ∆ cg) 

ff,rf∘.×fg,(cg tip rg,cg) 

ff,rf∘.×fg,rg 

ff,rf,fg,rg

dfx∘.×gx 

(dx{⍺ tip f ∆ ⍵}⍤s⊢x)∘.×gx 

(sx{⍺ tip f ∆ ⍵}⍤s⊢sx)∘.×fg,rg 

(ff,(cf tip f ∆ cf))∘.×fg,rg 

(ff,(cf tip rf,cf))∘.×fg,rg 

ff,rf∘.×fg,rg 

ff,rf,fg,rg

Object of shape where

fx←f x rf sx←⍴x 
ff←⍬ 
rf←⍴f x

dfx←f ∆ x rf,sx cf←sx

gx←g x rg fg←⍬ 
rg←⍴g x

dgx←g ∆x rg,sx cg←sx
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» dx tip((f∘.×g ∆)+order⍉f ∆∘.×g)x 

As this is true for arbitrary dx we have the following rule for the derivative of an outer product where the ranks of 
f and g are the same and neither f or g produces a frame with the supplied argument:

Note that:

• If f and g are vector functions and x is a vector, the rule simplifies to (f∘.×g ∆)+0 2 1⍉f ∆∘.×g (as per Iver-
son [0]).

• Although the rule can only be used where its execution does not produce a frame, higher rank arguments can 
still be handled by applying the rule with ⍤ operator.

Here are two examples:

 x←?6 7⍴9 Both f and g have the same rank 
 f←{(ssq,mean,max)⍵}⍤2 which is equal to ⍴⍴x. 
 g←{+/,⍵}⍤2 

 ⍴a←(f∘.×g)∆ x 

3 6 7 

 rule←(f∘.×g ∆)+order⍉f ∆∘.×g 

 ⍴b←rule x 

3 6 7 

 comp a b 

1 

 x←?5 6 7⍴9 Both f and g have the same rank 
  which is less than ⍴⍴x. 
 ⍴a←(f∘.×g)∆⍤2⊢x 

5 3 6 7 

 ⍴b←rule⍤2⊢x 

5 3 6 7 

 comp a b 

1 

Composition – the chain rule

THE RANK OF A COMPOSITION

The composition (f g) is, by definition, of unbounded rank. It accepts arguments of any rank, simply passing 
them unchanged to g. It does not produce a frame and its result is just f g x. Naturally, along the way, f and g 
may treat the values they receive as cells within frames but that just gives structure to the result and does not in-
fluence the rank of the composition.

Of course, the composition can be assigned a specified rank as (f g)⍤k for example. In that case, the result may 
be made up of a frame of individual results.

(f∘.×g)∆ ←→ (f∘.×g ∆)+order⍉f ∆∘.×g  with s≡t and s≥⍴⍴x

Page  of 19 34



THE SHAPES OF A COMPOSITION AND ITS DERIVATIVE

Consider a composition of functions f and g having ranks s and t respectively.

The application of g to an argument x of shape sx produces a result having a shape made up of two parts. One part 
has the shape of the result obtained by applying g to an individual t-cell of x. Let's call that rg. The other part is 
the frame fg left after the final t axes are dropped from sx. The final shape of g's result is fg,rg.

The derivative g ∆⍤t⊢x has the same frame fg but the shape of its individual result is rg,cg where cg is the 
shape of a t-cell of x.

f operates in much the same way producing a result with a frame of shape ff and an individual result of shape rf. 
However, the individual result comes about by the application of f to an s-cell of the result of g x. The frame ff 
is just the axes left after the final s are dropped from the shape of g x. The final shape of f's result is ff,rf.

The derivative f ∆⍤s⊢g x has the same frame ff but the shape of its individual result is rf,cf where cf is the 
shape of an s-cell of g x.

The shape of the result of (f g) at x is ff,rf.

The derivative of the composition (f g) ∆ x is unbounded. It does not produce a frame. Its result is of shape 
ff,rf,sx.

The following table summarizes the definitions:

THE RULE

We need to start with the difference in the value of the composition (f g) at two points infinitesimally close to-
gether, x and x+dx:

 (f g x+dx)-f g x 

The first step is to express g x+dx as a first order Taylor expansion of g about x. Writing fx←f x, gx←g x, 
dfx←dx{⍺ tip f ∆ ⍵}⍤s⊢x and dgx←dx{⍺ tip g ∆ ⍵}⍤t⊢x we have:

» (f gx+dgx)-f g x 

Object of shape where

g x fg,rg sx←⍴x 
fg←(-t)↓sx 
rg←⍴g⊃t cells x

g ∆⍤t⊢x fg,rg,cg cg←⍴⊃t cells x

f g x ff,rf ff←(-s)↓fg,rg 
rf←⍴f⊃s cells g x

f∆⍤s⊢g x ff,rf,cf cf←⍴⊃s cells g x

(f g)∆ x ff,rf,sx
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The next step is to express f gx+dgx as a first order Taylor expansion of f about gx.

» (f gx)+(dgx{⍺ tip f ∆ ⍵}⍤s⊢gx)-f gx 

» dgx{⍺ tip f ∆ ⍵}⍤s⊢gx Cancelling first and last terms.

We have now arrived at something of a challenging expression. Before we go further, let's do a shape analysis.

This checks out – we started with (f g x+dx)-f g x which is also ff,rf.

In order to find a simplifying rule of the form dx tip {...} x we need to avoid the frames potentially produced 
by {⍺ tip g ∆ ⍵}⍤t and {⍺ tip f ∆ ⍵}⍤s. We can do this by imposing the restrictions s≥⍴⍴g x and t≥⍴⍴x. 
Then we have:

» (dx tip g ∆ x)tip f ∆ gx 

» (f ∆ gx)tip dx tip g ∆ x Commuting the arguments to tip. 

Writing n←⍴⍴g x, this becomes:

» dx tip (f ∆ g x)(n mp)g ∆ x 

As this is true for arbitrary dx we have the following rule for the derivative of a composition:

SCALAR FUNCTIONS

Here's an extreme example where there will be frames and plenty of surplus zeros. f and g are rank 0 functions 
returning scalars as their results.

 f←{⍵×3} ⋄ g←{⍵*2} 

 dx←0.000001×x←?5 6 7⍴9 

In the evaluation of the composition, g acts on cells of rank 0 from x producing a rank 3 frame of scalars. f acts 
on that result, producing a further rank 3 frame of scalars. The individual result for the composition is of shape 5 
6 7 and the derivative becomes of shape 5 6 7 5 6 7, as follows:

 ⍴a←(f g)∆ x 

5 6 7 5 6 7 

This array has 44100 elements, most of which are surplus zeros:

(dx{⍺ tip g ∆ ⍵}⍤t⊢x){⍺ tip f ∆ ⍵}⍤s⊢g x 

(sx{⍺ tip g ∆ ⍵}⍤t⊢sx) {⍺ tip f ∆ ⍵}⍤s⊢g x 

(fg,(cg tip g ∆ cg)){⍺ tip f ∆ ⍵}⍤s⊢g x 

(fg,(cg tip rg,cg){⍺ tip f ∆ ⍵}⍤s⊢g x 

fg,rg{⍺ tip f ∆ ⍵}⍤s⊢fg,rg 

ff,rf

(f g)∆ ←→ (f ∆ g)(n mp)g ∆ n←⍴⍴g x 
       ←→ (f ∆ g)+.×g ∆ for a vector function g 
       ←→ (f ∆ g)×g ∆ for a scalar function g
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 ×/⍴a 

44100 

 mean a=0 

0.995238 

 sum a≠0 Surplus zeros fill 209 of the 210 
210  sub-arrays of shape 5 6 7. 

If we wish to avoid frames and the surplus zeros, we need to apply the derivative with rank 0.

 ⍴b←(f g)∆⍤0⊢x 

5 6 7 

This produces the compact value for the derivative. Note that b is identical to a with the zeros omitted:

 (,b)≡(,a)~0 

1 

As long as we are applying the derivative with rank 0, we can make use of the simpler rule for the derivative of a 
composition, as follows:

 rule←(f ∆ g)×g ∆ as, for scalars, 0 mp ←→ × 
 ⍴c←rule⍤0⊢x 

5 6 7 

 (b≡c),comp b c Not identical, but close. 
0 1 

 {dx tip ⍵}¨b c 

0.02682 0.02682 

VECTOR FUNCTIONS

 f←{⍵*3}⍤1 ⋄ g←{⍵+.×d}⍤1 

  dx←0.000001×x←?5 6 3⍴9 

 d←?3 8⍴9 

Here, g acts on cells which are vectors (of length 3, to conform with d) producing a vector of length 8 for each. 
These are assembled in a frame of shape 5 6 and the result is passed to f. f acts on vectors ultimately producing 
an individual result of shape 5 6 8. For the derivative, the result has no frame and is of shape 5 6 8 5 6 3.

 ⍴(f g)∆ x 

5 6 8 5 6 3 

In order to produce a denser derivative, we should apply the derivative with rank 1.

 ⍴a←(f g)∆⍤1⊢x 

5 6 8 3 

 rule←(f ∆ g)+.×g ∆ as +.× ←→ 1 mp 
 ⍴b←rule⍤1⊢x 

5 6 8 3 

 (a≡b),comp a b  Not identical, but very close. 
0 0.998611 
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Matrix multiplication
Iverson [0] shows the derivative of the matrix product between vector functions as a tensor contraction of the de-
rivative of the outer product:

 (f+.×g)∆ ←→ 0 1 tc⍨(f∘.×g)∆ 

In this case, f and g both produce vector results and the appropriate contraction is on the first two axes. It's possi-
ble to generalize this for higher rank results from f and g but we won't pursue that here. Instead we'll go back to 
first principles and derive a rule for the derivative of a matrix product.

Consider a matrix product of functions f and g having ranks s and t respectively. The function (f+.×g) is itself 
of unbounded rank. It merely passes its argument to both f and g.

The application of g to an argument x of shape sx produces a result having a shape made up of two parts. One part 
has shape rg of the result obtained by applying g to an individual t-cell of x. The other part is the frame fg left 
after the final t axes are dropped from sx. The final shape of g's result is fg,rg. The derivative g ∆⍤t⊢x has the 
same frame fg but the shape of its individual result is rg,cg where cg is the shape of a t-cell of x.

f operates in much the same way producing a result with a frame of shape ff and an individual result of shape rf. 
The derivative f ∆⍤s⊢g x has the same frame ff but the shape of its individual result is rf,cf where cf is the 
shape of an s-cell of x.

The following table summarizes these relationships:

The matrix product (f+.×g) requires that the last axis of f x match the first axis of g x. The shape of the result is 
(¯1↓ff,rf),1↓fg,rg.

Object of shape where

g x fg,rg sx←⍴x 
fg←(-t)↓sx 
rg←⍴g⊃t cells x

g ∆⍤t⊢x fg,rg,cg cg←⍴⊃t cells x

f x ff,rf ff←(-s)↓sx 
rf←⍴f⊃s cells x

f∆⍤s⊢g x ff,rf,cf cf←⍴⊃s cells x

(f+.×g)x (¯1↓ff,rf),1↓fg,rg (¯1↑ff,rf)≡1↑fg,rg

(f+.×g)∆ x (¯1↓ff,rf),(1↓fg,rg),sx

Page  of 23 34



THE RULE

Starting with the difference in the value of (f+.×g) at two points infinitesimally close together, x and x+dx, we 
have:

 ((f+.×g)x+dx)-(f+.×g)x 

» ((f x+dx)+.×g x+dx)-(f x)+.×g x  Applying the definition of f+.×g. 

As shorthand, let's write fx←f x, gx←g x, dfx←dx{⍺ tip f ∆ ⍵}⍤s⊢x and dgx←dx{⍺ tip g ∆ ⍵}⍤t⊢x.

» ((fx+dfx)+.×gx+dgx)-fx+.×gx  Using the first order Taylor expansions 
  of f and g about x. 
» (fx+.×gx)+(fx+.×dgx)+(dfx+.×gx)+(dfx+.×dgx) Expanding terms, using: 
 -fx+.×gx (a+b)+.×c+d ←→ 

  (a+.×c)+(b+.×c)+(a+.×d)+(b+.×d) 

» (fx+.×dgx)+dfx+.×gx Cancelling first and last terms and 
  ignoring the second order term in dx.

Here's an analysis of the shapes of the two terms in the line above:

If we are to find a rule of the form dx tip ... the first term needs to become something like dx tip fx+.×{g ∆ 
⍵}⍤t⊢x. Here's a shape analysis for this possibility:

The only way this can produce ff,rf+.×fg,rg is if cg≡sx. This means that g produces no frame, fg is empty and 
the entire argument is a single cell, i.e. t≥⍴⍴x. Accepting this restriction, the expression then becomes:

» (dx tip fx+.×g ∆ x)+(dx{⍺ tip f ∆ ⍵}⍤s⊢x)+.×gx 

The second term also needs to be transformed into something of the form dx tip ... but this is not as simple as 
just removing the parentheses. That would only work if tip and +.× were associative. The way forward can be 
seen by looking at the shapes of the following possible expression:

fx+.×dgx 

fx+.×dx{⍺ tip g ∆ ⍵}⍤t⊢x 

ff,rf+.×sx{⍺ tip g ∆ ⍵}⍤t⊢sx 

ff,rf+.×fg,(cg tip g ∆ cg) 

ff,rf+.×fg,rg 

(¯1↓ff,rf),1↓fg,rg

dfx+.×gx 

(dx{⍺ tip f ∆ ⍵}⍤s⊢x)+.×gx 

(sx{⍺ tip f ∆ ⍵}⍤s⊢sx)+.×fg,rg 

(ff,(cf tip f ∆ cf))+.×fg,rg 

ff,rf+.×fg,rg 

(¯1↓ff,rf),1↓fg,rg

dx tip fx+.×{g ∆ ⍵}⍤t⊢x 

sx tip fx+.×fg,(g ∆ cg) 

sx tip ff,rf+.×fg,rg,cg
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As it stands, this expression does not work. The problem comes with trying to form the inner product 
rf,cf+.×rg. In general, cf and rg do not conform. Fortunately, there is a way out. We can rearrange the order of 
the calculations by first shifting the axes of f ∆ cf to be cf,rf which then conforms with g x. Lastly we need to 
undo that shift for the tip evaluation with dx. The degree of the shift is just s. Let's redo the shape analysis for an 
improved expression.

We now have:

» (dx tip(f x)+.×g ∆ x) + dx{⍺ tip(-s)sh(s sh f ∆ ⍵)+.×g x}⍤s⊢x 

One last step remains. In order to be able to combine these two terms we need to avoid the application of the rank 
operator in the second term. We need to impose the further restriction that s≥⍴⍴x. Finally we have:

» dx tip(fx+.×g ∆ x)+(-⍴⍴x)sh((⍴⍴x)sh f ∆ x)+.×gx Combining terms with: 
  (a tip b)+a tip c ←→ a tip b+c 

The rule for the derivative of a matrix product between functions whose rank is greater than or equal to that of the 
argument is then:

Here's an example:

 f←{⍵∘.*2 3 4}⍤1 

 g←{6 7 8∘.-⍵,5}⍤1 

As both f and g are rank 1 functions, there is no difficulty getting the derivative with a vector argument:

 ⍴a←(f+.×g)∆ x←?7⍴9 

7 8 7 

dx{⍺ tip (f ∆ ⍵)+.×gx}⍤s⊢x 

sx{⍺ tip (f ∆ ⍵)+.×gx}⍤s⊢sx 

ff,(cf tip (f ∆ cf)+.×rg) 

(ff,(cf tip rf,cf+.×rg)

dx{⍺ tip (-s)sh(s sh f ∆ ⍵)+.×gx}⍤s⊢x 

sx{⍺ tip (-s)sh(s sh f ∆ ⍵)+.×gx}⍤s⊢sx 

ff,(cf tip (-s)sh(s sh f ∆ cf)+.×rg) 

ff,(cf tip (-s)sh(s sh rf,cf)+.×rg) 

ff,(cf tip (-s)sh(cf,rf)+.×rg) 

ff,(cf tip (-s)sh cf,(¯1↓rf),1↓rg) 

ff,(cf tip ((¯1↓rf),1↓rg),cf) 

ff,(¯1↓rf),1↓rg

(f+.×g)∆  ←→  (f+.×g ∆)+{(-⍴⍴⍵)sh((⍴⍴⍵)sh f ∆ ⍵)+.×g ⍵}
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However, with a matrix argument, we can't even evaluate the train or its derivative:

 (f+.×g)x←?2 4⍴9 LENGTH ERROR 

Fortunately, we can deal with this by applying the derivative with the rank operator:

 ⍴a←(f+.×g)∆⍤1⊢x 

2 4 5 4 

Let's now check whether the rule produces the correct result:

 rule←(f+.×g ∆)+{(-⍴⍴⍵)sh((⍴⍴⍵)sh f ∆ ⍵)+.×g ⍵} 

 ⍴b←rule⍤1⊢x 

2 4 5 4 

 comp a b 

1 

Inverse
Let’s assume that we have a function f with an inverse fi. By this we mean that the compositions (f fi) and (fi 
f) both act as the identity function simply returning their argument unchanged.

We'll confine ourselves to applications of the functions f and fi to arguments of small enough rank that they do 
not produce frames and we'll assume that f x and fi x produce results of the same shape sx←⍴x. So what should 
we expect for the derivatives of f and fi?

As there are no frames to consider, the results of f ∆ x and g ∆ x will both be of shape sx,sx. For example:

 f←{(1⌽⍵)*2}⍤1 ⋄ fi←{¯1⌽⍵*0.5}⍤1 

 x←3 1 5 2 6 8 

 x≡f fi x 

1 

 x≡fi f x 

1 

 ⍴a←f ∆ x 

6 6 

 disp a 
┌──────────────┐ 
│0 2  0 0  0  0│ 
│0 0 10 0  0  0│ 
│0 0  0 4  0  0│ 
│0 0  0 0 12  0│ 
│0 0  0 0  0 16│ 
│6 0  0 0  0  0│ 
└──────────────┘ 
 ⍴b←fi ∆ x 
6 6 
 disp b 
┌────────────────────────────────────────────────┐ 
│0        0   0        0        0        0.176777│ 
│0.288675 0   0        0        0        0       │ 
│0        0.5 0        0        0        0       │ 
│0        0   0.223607 0        0        0       │ 
│0        0   0        0.353553 0        0       │ 
│0        0   0        0        0.204124 0       │ 
└────────────────────────────────────────────────┘ 
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Let's start by considering the derivative of (f fi):

 (f fi)∆ x ←→ {⍵}∆ x ←→ id sx 

Alternatively, we know from the result for the derivative of a composition that:

 (f fi)∆ x ←→ (f ∆ fi x)(n mp)fi ∆ x where n←⍴sx 

Equating these, we have:

 id sx ←→ (f ∆ fi p)(n mp)fi ∆ x 

This expression holds for any array x as long as its rank is not greater than k. However, continuing to find an ex-
pression for fi ∆ is only possible if f is of rank 0 and x is a scalar or f is of rank 1 and x is a scalar or a vector. 
When these conditions hold, we can transform the equivalence by applying the matrix inverse of f ∆ fi x to 
both sides. Then,

 (⌹f ∆ fi x)+.×id sx ←→ (⌹f ∆ fi x)+.×(f ∆ fi x)+.× fi ∆ x 

We can simplify the left hand side to ⌹f ∆ fi x as id sx is an identity array for the inner product with an array 
of shape sx,sx; and the right hand side can be simplified to fi ∆ x as +.× is associative. This gives the following 
rule for the derivative of the inverse of scalar and vector functions:

This equation is good for both vector and scalar functions as matrix inverse ⌹ is equivalent to reciprocal ÷ for 
scalars. For functions of higher rank, we need an “extended inverse” xinv to replace the ⌹ used above. This func-
tion needs to satisfy:

 id ⍴p ←→ (xinv f ∆ fi x)((⍴⍴x)ip)f ∆ fi x 

Unfortunately, I’m not aware of a definition for xinv. Submissions, of course, are welcome.

fi ∆  ←→  ⌹(f ∆ fi)
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Appendix A  
Summary of the derivative rules 

 

Name Definition Rule Note

Taylor expansion f x+dx (f x)+dx{⍺ tip f ∆ ⍵}⍤rf⊢x rf is the rank of f

Sum (f+g)∆ f ∆ + g ∆

Difference (f-g)∆ f ∆ - g ∆

Product (f×g)∆ (f xp g ∆)+g xp f ∆

Quotient (f÷g)∆ ((f ∆)-(f÷g)xp g ∆)xp(÷g)

Outer 
Product

(f∘.×g)∆ (f∘.×g ∆)+order⍉f ∆∘.×g

Composition (f g)∆ (f ∆ g)(n mp)g ∆ m←⍴⍴g x

Inverse fi ∆ ⌹(f ∆ fi)

Matrix 
multiplication

(f+.×g)∆ (f+.×g ∆)+(-n)sh(n sh f ∆)+.×g n←⍴⍴x
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Appendix B 
Supporting Operators and Functions 

Shuffle
sh←{(⍺⌽⍳⍴⍴⍵)⍉⍵} 

sh uses a dyadic transpose to shuffle the specified number of axes to the right. For example:

 a←3 4 5 6 7⍴9 

 ⍴2 sh a 

6 7 3 4 5 

 ⍴¯2 sh a 

5 6 7 3 4 

Diagonality and the idem function
Diagonal matrices should be familiar. For example, the following 3 by 3 matrix is diagonal:
 3 0 0 
 0 1 0 
 0 0 4 

It has values on the diagonal but is zero elsewhere. Note that it is necessarily square and of even rank.

It’s possible to extend this concept to arrays of other ranks. Scalars are always diagonal but vectors never (because 
they are of odd rank). Square arrays m of higher rank are diagonal if the only non-zero values (i,j)⌷m occur at 
indices i,j with i≡j. Of particular interest are diagonal arrays whose diagonal elements are all 1. These can be 
generated as follows:

id←{(⍵,⍵)⍴1,(×/⍵)⍴0}

 id 3 
1 0 0 
0 1 0 
0 0 1 

 ⍴id 2 3 

2 3 2 3 

 disp id 2 3 
┌─────┬─────┬─────┐ 
│1 0 0│0 1 0│0 0 1│ 
│0 0 0│0 0 0│0 0 0│ 
├─────┼─────┼─────┤ 
│0 0 0│0 0 0│0 0 0│ 
│1 0 0│0 1 0│0 0 1│ 
└─────┴─────┴─────┘ 

 ,⍸id 2 3 The positions of 1s in the 2 3 2 3 array 
┌───────┬───────┬───────┬───────┬───────┬───────┐ 
│0 0 0 0│0 1 0 1│0 2 0 2│1 0 1 0│1 1 1 1│1 2 1 2│ 
└───────┴───────┴───────┴───────┴───────┴───────┘ 
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Tensor contraction
tc is the tensor contraction function (see [0] and [1]). Its left argument is an array and its right argument a vector 
of pairs of axes. The result is the array contracted on all pairs of axes specified. The definition is:

tc←{m←⍴⍴⍺ ⋄ p←0.5×n←⍴⍵ ⋄ q←m-n ⋄ r←⍳m ⋄ ((⊂r~⍵)⌷r)←⍳m-n ⋄ ((⊂⍵)⌷r)←2/q+⍳p 

    {+/,⍵}⍤p⊢r⍉⍺} 

Extended product
The extended product xp acts by repeating the argument of lesser rank on the right to match the argument of 
greater rank. The result has the greater rank and is produced by a multiplication without contraction. A useful way 
to think of this is as scalar extension for higher rank arrays. So if:

xp←{⍺×⍤(-(⍴⍴⍺)⌊⍴⍴⍵)⊢⍵} 

 a←3 1 4 1 ⋄ b←4 7⍴5 9 2 6 5 

 a xp b 
15 27  6 18 15 15 27 
 2  6  5  5  9  2  6 
20 20 36  8 24 20 20 
 9  2  6  5  5  9  2 

xp commutes, is associative and linear in its arguments:

Note that if the arguments to xp are of the same rank, xp is equivalent to ×.

Extended matrix product
The usual matrix product +.× acts on vectors, one from the last axis of the left argument and the other from first 
axis of the right argument. A useful extension to this is to define a function which behaves in the same way but 
applies to subarrays of the arguments having rank greater than 1. Here is the definition of an operator which gen-
erates this family of functions:

mp←{(,⍤⍺⍺⊢⍺)+.×,[⍺⍺↑⍳⍴⍴⍵]⍵} 

mp is a monadic operator producing a dyadic derived function. The left argument to mp specifies a number of axes 
k. The derived function k mp is dyadic and applies the function +.× between modified arguments. The left argu-
ment is modified so that its trailing k axes are ravelled. The right argument is modified so that its leading k axes 
are ravelled.

For example:

 ⍴(?4 5 6 3 2⍴9) (2 mp) ?3 2 7 8⍴9 

4 5 6 7 8 

or

     a xp b ←→ b xp a 

a xp b xp c ←→ (a xp b)xp c 

   a xp b+c ←→ (a xp b)+a xp c
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 ⍴(?4 5 6⍴9) (1 mp) ?6 7⍴9  Regular matrix product +.×. 
4 5 7 

The following relationships for mp hold, with comments below:

COMMUTIVITY

In general mp does not commute. a(k mp)b is not the same as b(k mp)a. This agrees with how the inner product 
+.× behaves. However, we do know that there is a relationship between the inner product and its commuted part-
ner. It goes like this:

 a+.×b ←→ ⍉(⍉b)+.×⍉a 

Is there a similar relationship for mp? Yes, there is:

 a(k mp)b ←→ ⍉(⍉b)(k mp)⍉a 

Here is an example:

 a←?3 2 4⍴9 ⋄ b←?2 4 6 7⍴9 

 ⍴x←a(2 mp)b 

3 6 7 

 ⍴y←⍉(⍉b)(2 mp)⍉a 

3 6 7 

 x≡y 

1 

ASSOCIATIVITY

In general mp is not associative. Here are two examples, one that is associative and one that is not:

 a←?2 3⍴9 ⋄ b←?3 4⍴9 ⋄ c←?4 7⍴9 

 ⍴a(1 mp)b(1 mp)c 

2 7 

 (a(1 mp)b(1 mp)c)≡(a(1 mp)b)(1 mp)c Associative. 
1 

 a←?6 3 2 7⍴9 ⋄ b←?3 2 4 5⍴9 ⋄ c←?4 5 7⍴9 

 ⍴a(3 mp)b(2 mp)c 

6 

 (a(3 mp)b(2 mp)c)≡(a(3 mp)b)(2 mp)c Fails with a LENGTH ERROR. 

       a(k mp)b  ←→  ⍉(⍉b)(k mp)⍉a 

a(j mp)b(k mp)c  ←→  (a(j mp)b)(k mp)c        if (j+k)≤⍴⍴b 
     a(k mp)b+c  ←→  (a(k mp)b)+a(k mp)c 

   (a+b)(k mp)c  ←→  (a(k mp)c)+b(k mp)c
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The second example illustrates why this happens. In the expression a(3 mp)b(2 mp)c the leftmost extended inner 
product (3 mp) requires arguments of at least rank 3. Its left argument a has a shape with trailing elements 3 2 7. 
No problem there. The right argument that it receives, however, only has two of these values (3 2) that come from 
b; the final element (7) comes from c. So, when we consider the expression (a(3 mp)b)(2 mp)c, the evaluation 
of (a(3 mp)b) has to proceed without the involvement of c. And that's a problem.

Associativity of the expression a(j mp)b(k mp)c ←→ (a(j mp)b)(k mp)c is only assured if (j+k)≤⍴⍴b. 

Total inner product
The total inner product is similar to the extended matrix product mp but performs contractions using trailing axes.

tip←{⍺ sop⍤((⍴⍴⍺)⌊⍴⍴⍵)⊢⍵} 

The rank of the result produced is the difference of the ranks of the arguments. For example, if the left argument 
has shape 2 7 4 3 5 and the right argument shape 3 5, the total inner product will be of shape 2 7 4 with values 
produced by multiplying matrices of shape 3 5 together and summing all their elements. Here’s an example:

 ⍴(?2 7 4 3 5⍴9) tip ?3 5⍴9 

2 7 4 

Note that if we wish to contract on leading axes, we may do so with {⍉(⍉⍺)tip⍉⍵}.

tip commutes and is linear in its arguments

but is not associative. Consider the shapes of a, b and c in the expression a tip b tip c. In order to produce a 
result of shape r, they can take one of four forms:

With these patterns, we cannot in general form the term a tip b and must conclude that tip is not associative.

USEFUL RELATIONSHIPS 

  a tip b ←→ b tip a 

a tip b+c ←→ (a tip b)+a tip c

Shape of a Shape of b Shape of c

A r,s s,t t

B r,s t s,t

C s r,s,t t

D s t r,s,t

a tip b tip c  ←→  b tip a∘.×c Forms A & C 
               ←→  c tip a∘.×b Forms B & D 
               ←→  c tip a(n mp)b Form A with n←(⍴⍴b)-⍴⍴c 
               ←→  b tip a(n mp)c Form B with n←(⍴⍴c)-⍴⍴b Page  of 32 34



For a×b tip c 

Let's assume that c has greater rank than b.Then c must be of shape (⍴a),⍴b in order to produce an array 
that matches a in shape. Each element of b tip c is formed as the sum of a product between b and a cell of 
matching rank from c. Finally, each element of the result is produced by multiplying an element from a with 
an element from b tip c. We can produce the same result by first factoring the cells of c with their match-
ing elements from a. That's exactly what a xp c does.

For (⍉b)+.×a 

Let's start with an example for this equivalence:
 a←?2 4⍴15 ⋄ b←?2 3⍴15 ⋄ a b 
┌──────────┬──────┐ 
│5  8  1  5│10 6 3│ 
│1 13 13 13│ 5 9 2│ 
└──────────┴──────┘ 

 a tip 2 sh b+.×id 3 4 
55 145  75 115 
39 165 123 147 
17  50  29  41 

 (⍉b)+.×a 
55 145  75 115 
39 165 123 147 
17  50  29  41 

Let's break this down a bit. The right argument to tip is a 3 by 4 array of twelve matrices:

 disp 2 sh b+.×id 3 4 
┌────────┬────────┬────────┬────────┐ 
│10 0 0 0│0 10 0 0│0 0 10 0│0 0 0 10│ 
│ 5 0 0 0│0  5 0 0│0 0  5 0│0 0 0  5│ 
├────────┼────────┼────────┼────────┤ 
│6 0 0 0 │0 6 0 0 │0 0 6 0 │0 0 0 6 │ 
│9 0 0 0 │0 9 0 0 │0 0 9 0 │0 0 0 9 │ 
├────────┼────────┼────────┼────────┤ 
│3 0 0 0 │0 3 0 0 │0 0 3 0 │0 0 0 3 │ 
│2 0 0 0 │0 2 0 0 │0 0 2 0 │0 0 0 2 │ 
└────────┴────────┴────────┴──────── 

The execution of tip multiplies together each of these twelve matrices with the left argument matrix a, summing 
all the elements of each multiplication. Because of the zeros introduced by id, we can see that each of the twelve 
values in the result comes about as the result of a matrix product between a column of a and a column of b. All 
twelve results can be brought together into an inner product with b if we use ⍉a as the left argument.

For a∘.×b tip c

For example:

 a←?3 4⍴9 ⋄ b←?2 5⍴9 ⋄ c←?6 2 5⍴9 

 ⍴a∘.×b tip c 

3 4 6 

 (a∘.×b tip c)≡b tip a∘.×c 

1 
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